Skip to main content

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

  • 1045 Accesses

Abstract

The energy density of rechargeable batteries has improved more than six times over the past 150 years. Currently commercial versions of lithium-ion boast an impressive 265 Wh/kg with possible improvements to 315 Wh/kg. Due to its high energy density, this technology has started to recapture automotive markets worldwide. However, post-lithium-ion batteries promise energy densities of more than 500 Wh/kg which will be high enough to power aviation. A stringent requirement of a post-lithium-ion battery is the replacement of currently commercial graphite anodes with energy-dense metal anodes. Unfortunately, the safety of metallic lithium is hindered by dendritic growth so smooth plating magnesium metal anodes have been proposed instead. Magnesium also has double the volumetric energy density of lithium and a far cheaper cost due to higher abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee A, Ziv B, Levi E et al (2016) Single-wall carbon nanotubes embedded in active masses for high-performance lead-acid batteries. J Electrochem Soc 163:A1518–A1526. https://doi.org/10.1149/2.0261608jes

    Article  Google Scholar 

  2. Yazami R, Touzain P (1983) A reversible graphite-lithium negative electrode for electrochemical generators. J Power Sources 9:365–371. https://doi.org/10.1016/0378-7753(83)87040-2

    Article  Google Scholar 

  3. Ferg E, Gummow RJ, de Kock A, Thackeray MM (1994) Spinel anodes for lithium-ion batteries. J Electrochem Soc 141:L147–L150. https://doi.org/10.1149/1.2059324

    Article  Google Scholar 

  4. Zachau-Christiansen B, West K, Jacobsen T, Atlung S (1990) Lithium insertion in oxide spinels. Solid State Ionics 40:580–584. https://doi.org/10.1016/0167-2738(90)90075-3

    Article  Google Scholar 

  5. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x < −1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789. https://doi.org/10.1016/0025-5408(80)90012-4

    Article  Google Scholar 

  6. Thackeray MM, David WIF, Bruce PG, Goodenough JB (1983) Lithium insertion into manganese spinels. Mater Res Bull 18:461–472. https://doi.org/10.1016/0025-5408(83)90138-1

    Article  Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194. https://doi.org/10.1149/1.1837571

    Article  Google Scholar 

  8. Inamasu T, Katayama Y, Arai S, Nakagome T (2000) Studies on lithium nickel oxide as positive active material for lithium ion polymer battery. Yuasa Jiho 89:44–48

    Google Scholar 

  9. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171–174. https://doi.org/10.1016/S0378-7753(03)00173-3

    Article  Google Scholar 

  10. Ellis LD, Xia J, Louli AJ, Dahn JR (2016) Effect of substituting LiBF4 for LiPF6 in high voltage lithium-ion cells containing electrolyte additives. J Electrochem Soc 163:A1686–A1692. https://doi.org/10.1149/2.0851608jes

    Article  Google Scholar 

  11. Ma L, Glazier SL, Petibon R, et al (2017) A guide to ethylene carbonate-free electrolyte making for li-ion cells. http://jes.ecsdl.org. Accessed 21 Mar 2017

  12. Xia J, Petibon R, Xiong D et al (2016) Enabling linear alkyl carbonate electrolytes for high voltage li-ion cells. J Power Sources 328:124–135. https://doi.org/10.1016/j.jpowsour.2016.08.015

    Article  Google Scholar 

  13. Liao J-Y, Oh S-M, Manthiram A (2016) Core/double-shell type gradient Ni-rich LiNi0.76Co0.10Mn0.14O2 with high capacity and long cycle life for lithium-ion batteries. ACS Appl Mater Interfaces 8:24543–24549. https://doi.org/10.1021/acsami.6b06172

    Article  Google Scholar 

  14. Qiu W, Xia J, Chen L, Dahn JR (2016) A study of methyl phenyl carbonate and diphenyl carbonate as electrolyte additives for high voltage LiNi0.8Mn0.1Co0.1O2/graphite pouch cells. J Power Sources 318:228–234. https://doi.org/10.1016/j.jpowsour.2016.03.105

    Article  Google Scholar 

  15. Zhang H, Karki K, Huang Y et al (2017) Atomic insight into the layered/spinel phase transformation in charged LiNi0.80Co0.15Al0.05O2 cathode particles. J Phys Chem C 121:1421–1430. https://doi.org/10.1021/acs.jpcc.6b10220

    Article  Google Scholar 

  16. Bucur CB, Gregory T, Oliver AG, Muldoon J (2015) Confession of a magnesium battery. J Phys Chem Lett 6:3578–3591. https://doi.org/10.1021/acs.jpclett.5b01219

    Article  Google Scholar 

  17. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 1:16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  Google Scholar 

  18. Muldoon J, Bucur CB, Gregory T (2014) Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev 114:11683–11720. https://doi.org/10.1021/cr500049y

    Article  Google Scholar 

  19. Muldoon J, Bucur CB, Gregory T (2017) Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed. Angew Chem Int Ed. https://doi.org/10.1002/anie.201700673

  20. Saha P, Datta MK, Velikokhatnyi OI et al (2014) Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci 66:1–86. https://doi.org/10.1016/j.pmatsci.2014.04.001

    Article  Google Scholar 

  21. Gaddum LW, French HE (1927) The electrolysis of grignard solutions. J Am Chem Soc 49:1295–1299. https://doi.org/10.1021/ja01404a020

    Article  Google Scholar 

  22. Aurbach D, Lu Z, Schechter A et al (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727. https://doi.org/10.1038/35037553

    Article  Google Scholar 

  23. Matsui M (2011) Study on electrochemically deposited mg metal. J Power Sources 196:7048–7055. https://doi.org/10.1016/j.jpowsour.2010.11.141

    Article  Google Scholar 

  24. Aurbach D, Gofer Y, Schechter A et al (2001) A comparison between the electrochemical behavior of reversible magnesium and lithium electrodes. J Power Sources 97–98:269–273. https://doi.org/10.1016/S0378-7753(01)00622-X

    Article  Google Scholar 

  25. Keyzer EN, Glass HFJ, Liu Z et al (2016) Mg(PF6)2-based electrolyte systems: understanding electrolyte–electrode interactions for the development of mg-ion batteries. J Am Chem Soc 138:8682–8685. https://doi.org/10.1021/jacs.6b04319

    Article  Google Scholar 

  26. Ha S-Y, Lee Y-W, Woo SW et al (2014) Magnesium(II) Bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces 6:4063–4073. https://doi.org/10.1021/am405619v

    Article  Google Scholar 

  27. Vestfried Y, Chusid O, Goffer Y et al (2007) Structural analysis of electrolyte solutions comprising magnesium−aluminate chloro−organic complexes by raman spectroscopy. Organometallics 26:3130–3137. https://doi.org/10.1021/om061076s

    Article  Google Scholar 

  28. Pour N, Gofer Y, Major DT, Aurbach D (2011) Structural analysis of electrolyte solutions for rechargeable mg batteries by stereoscopic means and dft calculations. J Am Chem Soc 133:6270–6278. https://doi.org/10.1021/ja1098512

    Article  Google Scholar 

  29. Kim HS, Arthur TS, Allred GD et al (2011) Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun 2:427. https://doi.org/10.1038/ncomms1435

    Article  Google Scholar 

  30. Muldoon J, Bucur CB, Oliver AG et al (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5:5941–5950. https://doi.org/10.1039/C2EE03029B

    Article  Google Scholar 

  31. Kuwata H, Matsui M, Imanishi N (2016) Surface analysis of magnesium metal anode for rechargeable magnesium batteries. ECS Meet Abstr 03:370–370

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Bucur, C.B. (2018). Introduction. In: Challenges of a Rechargeable Magnesium Battery. SpringerBriefs in Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-65067-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65067-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65066-1

  • Online ISBN: 978-3-319-65067-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics