Skip to main content

High-Throughput Hardware Architecture for LDPC Decoders

  • Chapter
  • First Online:
Application-Specific Hardware Architecture Design with VHDL

Part of the book series: Signals and Communication Technology ((SCT))

  • 1876 Accesses

Abstract

The error probability considering communication channel such as electromagnetic wave through space is high. This is why channel encoding for error correction is commonly used. Powerful error correction codes are available (i.e., low-density parity check codes LDPC), unfortunately, the more powerful the codes are, the more computational cost for the decoding at destination increases. Nevertheless, high performance computing architectures (e.g., graphic processing units, FPGAs) are available for implementing high-throughput decoders. This chapter focuses on the implementation of high-throughput LDPC decoders using field programmable gate array (FPGA) technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.G. Gallager, Low-density parity-check codes, IRE Transm. Inf. Theory IT8, 21–28 (Jan. 1962)

    Google Scholar 

  2. S. Kim, G.E. Sobelman, H. Lee, A reduced-complexity archi-tecture for LDPC Layered de-coding schemes, IEEE Trans. VLSI Syst. 19(6), 1099–1103 (2011)

    Google Scholar 

  3. Steffen Kunze, Emil Matus, Gerhard P. Fettweis, ASIP decoder architecture for convolutional and LDPC codes (IEEE Int. Symp. Circuits Syst., ISCAS, 2009)

    Google Scholar 

  4. H. Ji, J. Cho, W. Sung, Memory access optimized implementation of cyclic and quasi-cyclic LDPC codes on a GPGPU. J. Sig. Process. Syst. 64(1), 149–159 (2011)

    Google Scholar 

  5. G. Falcao, L. Sousa, V. Silva, Massively LDPC Decoding on Multicore Architectures, IEEE Trans. Parallel Distrib. Syst. 22(2), 309–322 (2011)

    Google Scholar 

  6. Houston M, Stanford University, General Purpose Computation on Graphics Processors, http://graphics.stanford.edu/~mhouston/, (2008)

  7. J. Su, K. Liu, H. Min, Hardware efficient decoding of LDPC codes using partial-min algorithms, IEEE Trans. Consum. Electron. 52(4), 1463–1468 (November 2006)

    Google Scholar 

  8. Z. Zhang et al., Design of LDPC decoders for improved low error rate perfor-mance: quantization and algorithm choices. IEEE Trans. Wireless Comm. 8(11), 3258–3268 (2009)

    Google Scholar 

  9. F.R. Kschischang, B.J. Frey, H.-A. Loeliger, Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    MathSciNet  MATH  Google Scholar 

  10. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier and X. Hu, Reduced Complexity Decoding of LDPC Codes, IEEE Trans. Commun. 53, 1232–1232 (2005)

    Google Scholar 

  11. Sunghwan Kim, Min-Ho Janget et al., Sequential message-passing decoding of LDPC codes by partitioning check nodes. IEEE Trans. on Communications 56(7), 1025–1031 (2008)

    Google Scholar 

  12. John R. Barry, Low-density parity-check codes, Georgia Institute of Tech., http://www.sce.carleton.ca/~hsaeedi/ldpc.pdf, October 2001

  13. X. Zhang, Y. Tian, et al., An multi-rate LDPC decoder based on ASIP for DMB-TH, in IEEE 8th International Conference on ASIC, pp. 995–998 (2009)

    Google Scholar 

  14. D. Oh, K. Parhi, Min-Sum decoder architectures with reduced word length for LDPC codes, IEEE Trans. Circuits Syst. 57(1), 105–115 (January 2010)

    Google Scholar 

  15. J. Chen, M. Fossorier, Density evolution for two improved BP-based decoding al-gorithms of LDPC codes. IEEE Commun. Lett. 6(5), 208–2010 (2002)

    Google Scholar 

  16. J. Singh, D. Pesch, Application of energy efficient soft-decision error control in wire-less sensor networks, Telecommun. Syst. 52(4), 2573–2583 (2011)

    Google Scholar 

  17. M. Kupimai, A. Meesomboon, V. Imtawil, Low complexity encoder of high rate irregular QC-LDPC codes for partial response channels, Adv. Electr. Comput. Eng. 11(4), 47–54 (2011)

    Google Scholar 

  18. C. Jego, P. Adde, C. Leroux, Full-parallel architecture for turbo decoding of product codes. Electron. Lett. 42(18), 1052–1054 (2006)

    Google Scholar 

  19. R. Terebes, Mobile communication systems. Part one: GSM networks (UTPRES, Cluj-Napoca, 2006). ISBN 978-973-662-221

    Google Scholar 

  20. D. Klinc, J. Ha, S. McLaughlin, J. Barros and B. Kwak, LDPC codes for physical layer security, IEEE Globecom Proceedings (2009)

    Google Scholar 

  21. Q. Huang, S. Pan., M. Zhang and Z. Wang, A concatenation scheme of LDPC codes and source codes for flash memories, EURASIP J. Adv. Sig. Process. 2012:208 (2012)

    Google Scholar 

  22. A.D. Potorac, Considerations on VoIP throughput in 802.11 networks, Adv. Electr. Comput. Eng. 9(3), 45–50 (2009)

    Google Scholar 

  23. E. Puschita, P. Kántor, G. Manuliac, T. Palade, J. Bitó, Enabling Frame-Based Adaptive Video Transmission in a Multilink Environment, Adv. Electr. Comput. Eng. 12(2), 9–14 (2012)

    Google Scholar 

  24. X. Liu, J. Cai, L. Wu, Improved decoding algorithm of serial belief propagation with a stop updating criterion for LDPC codes and applications in patterned media storage. IEEE Trans. Magn. 49(2), 829–836 (2013)

    Google Scholar 

  25. X. Hu, E. Eleftheriou, D. Arnold, A. Dholakia, Efficient Implementations of the Sum-Product Algorithm for Decoding, Global Telecommunications Conference Proceedings, Globecom (2001)

    Google Scholar 

  26. M. Awais, A. Singh, G. Masera, High throughput LDPC decoder for WiMAX (802.16e) applications, in Advances in Computing and Communications, Communica-tions in Computer and Information Science, vol. 191 (2011) pp. 374–385

    Google Scholar 

  27. Y. Sun, J. Cavallaro, A flexible LDPC/turbo decoder architecture. J. Sig. Process. Syst. 64(1), 1–16 (2011)

    Google Scholar 

  28. M. Alles, T. Vogt, N. Wehn, FlexiChaP: a reconfigurable ASIP for convolutional, turbo, and LDPC code decoding, 5th International Symposium on Turbo Codes and Related Topics, (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Belean .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Belean, B. (2018). High-Throughput Hardware Architecture for LDPC Decoders. In: Application-Specific Hardware Architecture Design with VHDL. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-65025-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65025-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65023-4

  • Online ISBN: 978-3-319-65025-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics