Discovering Infrequent Behavioral Patterns in Process Models

  • David Chapela-CampaEmail author
  • Manuel Mucientes
  • Manuel Lama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)


Process mining has focused, among others, on the discovery of frequent behavior with the aim to understand what is mainly happening in a process. Little work has been done involving uncommon behavior, and mostly centered on the detection of anomalies or deviations. But infrequent behavior can be also important for the management of a process, as it can reveal, for instance, an uncommon wrong realization of a part of the process. In this paper, we present WoMine-i, a novel algorithm to retrieve infrequent behavioral patterns from a process model. Our approach searches in a process model extracting structures with sequences, selections, parallels and loops, which are infrequently executed in the logs. This proposal has been validated with a set of synthetic and real process models, and compared with state of the art techniques. Experiments show that WoMine-i can find all types of patterns, extracting information that cannot be mined with the state of the art techniques.


Infrequent patterns Process mining Process discovery 



This research was supported by the Spanish Ministry of Economy and Competitiveness (grant TIN2014-56633-C3-1-R) and the Galician Ministry of Education, Culture and Universities (grants GRC2014/030 and accreditation 2016-2019, ED431G/08). These grants are co-funded by the European Regional Development Fund (ERDF/FEDER program).


  1. 1.
    Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report WP 166 1–34 (2006)Google Scholar
  2. 2.
    Leemans, S.J.J., Fahland, D., Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38697-8_17CrossRefGoogle Scholar
  3. 3.
    Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Prodigen: mining complete, precise and minimal structure process models with a genetic algorithm. Inf. Sci. 294, 315–333 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth. In: Proceedings of the 17th International Conference on Data Engineering, pp. 215–224 (2001)Google Scholar
  5. 5.
    Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process models. J. Innov. Digit. Ecosyst. 3, 183–196 (2016)CrossRefGoogle Scholar
  6. 6.
    Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained graphs: the case of workflow systems. In: Boulicaut, J.-F., Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS, vol. 3848, pp. 155–171. Springer, Heidelberg (2006). doi: 10.1007/11615576_8CrossRefzbMATHGoogle Scholar
  7. 7.
    Conforti, R., La Rosa, M., ter Hofstede, A.H.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29, 300–314 (2016)CrossRefGoogle Scholar
  8. 8.
    Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for process mining applications. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) ISMIS 2008. LNCS, vol. 4994, pp. 150–159. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-68123-6_17CrossRefGoogle Scholar
  9. 9.
    Yang, W.S., Hwang, S.Y.: A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst. Appl. 31(1), 56–68 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Münz, G., Li, S., Carle, G.: Traffic anomaly detection using k-means clustering. In: GI/ITG Workshop MMBnet (2007)Google Scholar
  11. 11.
    Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors for failure detection: a discriminative pattern mining approach. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 557–566. ACM (2009)Google Scholar
  12. 12.
    Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38(1), 33–44 (2013)CrossRefGoogle Scholar
  13. 13.
    Lu, X., Fahland, D., Biggelaar, F.J.H.M., Aalst, W.M.P.: Detecting deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). doi: 10.1007/978-3-319-42887-1_11CrossRefGoogle Scholar
  14. 14.
    De Weerdt, J., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)CrossRefGoogle Scholar
  15. 15.
    Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998). doi: 10.1007/3-540-65306-6_15CrossRefzbMATHGoogle Scholar
  16. 16.
    Aalst, W., Adriansyah, A., Dongen, B.: Causal nets: a modeling language tailored towards process discovery. In: Katoen, J.-P., König, B. (eds.) CONCUR 2011. LNCS, vol. 6901, pp. 28–42. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23217-6_3CrossRefGoogle Scholar
  17. 17.
    Leung, C.K.S.: Monotone Constraints. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of Database Systems, pp. 1769–1769. Springer, Boston (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • David Chapela-Campa
    • 1
    Email author
  • Manuel Mucientes
    • 1
  • Manuel Lama
    • 1
  1. 1.Centro Singular de Investigación en Tecnoloxías da Información (CiTIUS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations