Towards a Holistic Discovery of Decisions in Process-Aware Information Systems

  • Johannes De SmedtEmail author
  • Faruk Hasić
  • Seppe K. L. M. vanden Broucke
  • Jan Vanthienen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)


The interest of integrating decision analysis approaches with the automated discovery of processes from data has seen a vast surge over the past few years. Most notably the introduction of the Decision Model and Notation (DMN) standard by the Object Management Group has provided a suitable solution for filling the void of decision representation in business process modeling languages. Process discovery has already embraced DMN for so-called decision mining, however, the efforts are still limited to a control flow point of view, i.e., explaining routing (constructs) or decision points. This work, however, introduces an integrated way of capturing the decisions that are embedded in the process, which is not limited to local characteristics, but provides a decision model in the form of a decision diagram which encompasses the full process execution span. Therefore, a typology is proposed for classifying different activities that contribute to the decision dimension of the process. This enables the possibility for an in-depth analysis of every activity, deciding whether it entails a decision, and what its relation is to other activities. The findings are implemented and illustrated on the 2013 BPI Challenge log, an exemplary dataset originating from a decision-driven process.


Decision mining Decision Model and Notation Process mining 


  1. 1.
    OMG: Decision Model and Notation (2015)Google Scholar
  2. 2.
    Rozinat, A., van der Aalst, W.M.P.: Decision mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006). doi: 10.1007/11841760_33CrossRefGoogle Scholar
  3. 3.
    Batoulis, K., Meyer, A., Bazhenova, E., Decker, G., Weske, M.: Extracting decision logic from process models. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS, vol. 9097, pp. 349–366. Springer, Cham (2015). doi: 10.1007/978-3-319-19069-3_22CrossRefGoogle Scholar
  4. 4.
    Bazhenova, E., Buelow, S., Weske, M.: Discovering decision models from event logs. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 237–251. Springer, Cham (2016). doi: 10.1007/978-3-319-39426-8_19CrossRefGoogle Scholar
  5. 5.
    de Leoni, M., Dumas, M., García-Bañuelos, L.: Discovering branching conditions from business process execution logs. In: Cortellessa, V., Varró, D. (eds.) FASE 2013. LNCS, vol. 7793, pp. 114–129. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-37057-1_9CrossRefGoogle Scholar
  6. 6.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Decision mining revisited - discovering overlapping rules. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 377–392. Springer, Cham (2016). doi: 10.1007/978-3-319-39696-5_23CrossRefGoogle Scholar
  7. 7.
    Vanthienen, J., Caron, F., De Smedt, J.: Business rules, decisions and processes: five reflections upon living apart together. In: Proceedings SIGBPS Workshop on Business Processes and Services (BPS 2013), pp. 76–81 (2013)Google Scholar
  8. 8.
    OMG: Business process model and notation (BPMN) 2.0 (2011)Google Scholar
  9. 9.
    Janssens, L., Bazhenova, E., Smedt, J.D., Vanthienen, J., Denecker, M.: Consistent integration of decision (DMN) and process (BPMN) models. In: CAiSE Forum. CEUR Workshop Proceedings. vol. 1612, pp. 121–128. (2016)Google Scholar
  10. 10.
    Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product based workflow support: dynamic workflow execution. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69534-9_42CrossRefGoogle Scholar
  11. 11.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  12. 12.
    Kim, A., Obregon, J., Jung, J.-Y.: Constructing decision trees from process logs for performer recommendation. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 224–236. Springer, Cham (2014). doi: 10.1007/978-3-319-06257-0_18CrossRefGoogle Scholar
  13. 13.
    de Leoni, M., van der Aalst, W.M.: Data-aware process mining: discovering decisions in processes using alignments. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1454–1461. ACM (2013)Google Scholar
  14. 14.
    Petrusel, R., Vanderfeesten, I., Dolean, C.C., Mican, D.: Making decision process knowledge explicit using the decision data model. In: Abramowicz, W. (ed.) BIS 2011. LNBIP, vol. 87, pp. 172–184. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21863-7_15CrossRefGoogle Scholar
  15. 15.
    de Leoni, M., van der Aalst, W.M.P., Dees, M.: A general framework for correlating business process characteristics. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 250–266. Springer, Cham (2014). doi: 10.1007/978-3-319-10172-9_16CrossRefGoogle Scholar
  16. 16.
    Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Cooper. Inf. Syst. 24(01), 1550001 (2015)CrossRefGoogle Scholar
  17. 17.
    Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying business entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19589-1_1CrossRefGoogle Scholar
  18. 18.
    De Smedt, J., vanden Broucke, S.K.L.M., Obregon, J., Kim, A., Jung, J.-Y., Vanthienen, J.: Decision mining in a broader context: an overview of the current landscape and future directions. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 197–207. Springer, Cham (2017). doi: 10.1007/978-3-319-58457-7_15CrossRefGoogle Scholar
  19. 19.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  20. 20.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Data-driven process discovery - revealing conditional infrequent behavior from event logs. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 545–560. Springer, Cham (2017). doi: 10.1007/978-3-319-59536-8_34CrossRefGoogle Scholar
  21. 21.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from incomplete event logs. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 91–110. Springer, Cham (2014). doi: 10.1007/978-3-319-07734-5_6CrossRefGoogle Scholar
  22. 22.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-17722-4_5CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Johannes De Smedt
    • 1
    • 2
    Email author
  • Faruk Hasić
    • 1
  • Seppe K. L. M. vanden Broucke
    • 1
  • Jan Vanthienen
    • 1
  1. 1.Department of Decision Sciences and Information Management, Faculty of Economics and BusinessKU LeuvenLeuvenBelgium
  2. 2.Management Science and Business Economics GroupUniversity of Edinburgh Business SchoolEdinburghUK

Personalised recommendations