Temporal Network Representation of Event Logs for Improved Performance Modelling in Business Processes

  • Arik SenderovichEmail author
  • Matthias Weidlich
  • Avigdor Gal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10445)


Analysing performance of business processes is an important vehicle to improve their operation. Specifically, an accurate assessment of sojourn times and remaining times enables bottleneck analysis and resource planning. Recently, methods to create respective performance models from event logs have been proposed. These works are severely limited, though: They either consider control-flow and performance information separately, or rely on an ad-hoc selection of temporal relations between events. In this paper, we introduce the Temporal Network Representation (TNR) of a log, based on Allen’s interval algebra, as a complete temporal representation of a log, which enables simultaneous discovery of control-flow and performance information. We demonstrate the usefulness of the TNR for detecting (unrecorded) delays and for probabilistic mining of variants when modelling the performance of a process. In order to compare different models from the performance perspective, we develop a framework for measuring performance fitness. Under this framework, we provide guarantees that TNR-based process discovery dominates existing techniques in measuring performance characteristics of a process. To illustrate the practical value of the TNR, we evaluate the approach against three real-life datasets. Our experiments show that the TNR yields an improvement in performance fitness over state-of-the-art algorithms.


  1. 1.
    Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  2. 2.
    Senderovich, A., Weidlich, M., Yedidsion, L., Gal, A., Mandelbaum, A., Kadish, S., Bunnell, C.A.: Conformance checking and performance improvement in scheduled processes: a queueing-network perspective. Inf. Syst. 62, 185–206 (2016)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Using life cycle information in process discovery. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 204–217. Springer, Cham (2016). doi: 10.1007/978-3-319-42887-1_17CrossRefGoogle Scholar
  5. 5.
    Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.P.: Discovering simulation models. Inf. Syst. 34(3), 305–327 (2009)CrossRefGoogle Scholar
  6. 6.
    Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang, L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45005-1_27CrossRefGoogle Scholar
  7. 7.
    Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predicting delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 42–57. Springer, Cham (2014). doi: 10.1007/978-3-319-07881-6_4CrossRefGoogle Scholar
  8. 8.
    Wen, L., Wang, J., van der Aalst, W.M., Huang, B., Sun, J.: A novel approach for process mining based on event types. J. Intell. Inf. Syst. 32(2), 163–190 (2009)CrossRefGoogle Scholar
  9. 9.
    Allen, J.F.: Maintaining knowledge about temporal intervals. CACM 26(11), 832–843 (1983)CrossRefGoogle Scholar
  10. 10.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38697-8_17CrossRefGoogle Scholar
  11. 11.
    Alspaugh, T.A.: Software support for calculations in Allen’s interval algebra (2005)Google Scholar
  12. 12.
    Van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  13. 13.
    Weijters, A., van Der Aalst, W.M., De Medeiros, A.A.: Process mining with the heuristics miner-algorithm. Technische Universiteit Eindhoven, Technical report WP 166, pp. 1–34 (2006)Google Scholar
  14. 14.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014). doi: 10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  15. 15.
    Bickel, P.J., Doksum, K.A.: Mathematical Statistics: Basic Ideas and Selected Topics, vol. 2. CRC Press, Boca Raton (2015)zbMATHGoogle Scholar
  16. 16.
    Armony, M., et al.: On patient flow in hospitals: a data-based queueing-science perspective. Stoch. Syst. 5(1), 146–194 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Burattin, A.: Heuristics miner for time interval. In: Process Mining Techniques in Business Environments: Theoretical Aspects, Algorithms, Techniques and Open Challenges in Process Mining. LNBIP, vol. 207, pp. 85–95. Springer, Cham (2015). doi: 10.1007/978-3-319-17482-2_11CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on process mining. Inf. Syst. 36(2), 450–475 (2011)CrossRefGoogle Scholar
  19. 19.
    Vila, L.: A survey on temporal reasoning in artificial intelligence. AI Commun. 7(1), 4–28 (1994)Google Scholar
  20. 20.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54(1–2), 199–227 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). doi: 10.1007/978-3-319-07881-6_31CrossRefGoogle Scholar
  22. 22.
    Senderovich, A., Leemans, S.J.J., Harel, S., Gal, A., Mandelbaum, A., van der Aalst, W.M.P.: Discovering queues from event logs with varying levels of information. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 154–166. Springer, Cham (2016). doi: 10.1007/978-3-319-42887-1_13CrossRefGoogle Scholar
  23. 23.
    Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75183-0_24CrossRefGoogle Scholar
  24. 24.
    Fahland, D., Van Der Aalst, W.M.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)CrossRefGoogle Scholar
  25. 25.
    Senderovich, A., Shleyfman, A., Weidlich, M., Gal, A., Mandelbaum, A.: P\(^3\)-Folder: optimal model simplification for improving accuracy in process performance prediction. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 418–436. Springer, Cham (2016). doi: 10.1007/978-3-319-45348-4_24CrossRefGoogle Scholar
  26. 26.
    Rozinat, A., van der Aalst, W.M.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  27. 27.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., Dongen, B.F., van der Aalst, W.M.P.: Alignment based precision checking. In: Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 137–149. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-36285-9_15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Arik Senderovich
    • 1
    Email author
  • Matthias Weidlich
    • 2
  • Avigdor Gal
    • 1
  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael
  2. 2.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations