Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 824 Accesses

Abstract

In practice, the experimenter always has to verify that the three components of a quantum experiment—state preparation, transformation, and measurement—are close to what the theorist wants them to be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As discussed in Ref. [9], maximum likelihood estimation is a frequentist tool, which works in the asymptotic limit of infinite sample size, but “applying a frequentist method to relatively small amounts of data is inherently disaster-prone”.

  2. 2.

    This is sufficient to describe a large range of joint system-environment dynamics including common error channels, and to illustrate the technique [40, 43], although a slightly larger environment would be required in the most general case [44, 45].

References

  1. Rahimi-Keshari, S., Broome, M.A., Fickler, R., Fedrizzi, A., Ralph, T.C., White, A.G.: Direct characterization of linear-optical networks. Opt. Express 21, 13450–13458 (2013)

    Article  ADS  Google Scholar 

  2. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010)

    Article  MATH  Google Scholar 

  3. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171–2180 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Wood, C. J.: Initialization and Characterization of Open Quantum Systems. Ph.D. thesis, University of Waterloo (2015)

    Google Scholar 

  5. Schwemmer, C., Knips, L., Richart, D., Weinfurter, H., Moroder, T., Kleinmann, M., Gühne, O.: Systematic errors in current quantum state tomography tools. Phys. Rev. Lett. 114, 080403 (2015)

    Article  ADS  Google Scholar 

  6. Shang, J., Ng, H. K., Englert, B.-G.: Quantum state tomography: Mean squared error matters, bias does not (2014). arXiv:1405.5350

  7. Hradil, Z.: Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  8. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  9. Blume-Kohout, R.: Optimal, reliable estimation of quantum states. New J. Phys. 12, 043034 (2010)

    Article  ADS  Google Scholar 

  10. Ferrie, C., Blume-Kohout, R.: Estimating the bias of a noisy coin. AIP Conf. Proc. 1443, 14–21 (2012)

    Article  ADS  Google Scholar 

  11. Blume-Kohout, R.: Hedged maximum likelihood quantum state estimation. Phys. Rev. Lett. 105, 200504 (2010)

    Article  ADS  Google Scholar 

  12. Home, J.P., Hanneke, D., Jost, J.D., Amini, J.M., Leibfried, D., Wineland, D.J.: Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Blume-Kohout, R.: Robust error bars for quantum tomography (2012). arXiv:1202.5270

  14. Knill, E., Leibfried, D., Reichle, R., Britton, J., Blakestad, R., Jost, J., Langer, C., Ozeri, R., Seidelin, S., Wineland, D.: Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008)

    Article  ADS  MATH  Google Scholar 

  15. Wallman, J.J., Flammia, S.T.: Randomized benchmarking with confidence. New J. Phys. 16, 103032 (2014)

    Article  ADS  Google Scholar 

  16. Blume-Kohout, R., Gamble, J. K., Nielsen, E., Mizrahi, J., Sterk, J. D., Maunz, P.: Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit (2013). arXiv:1310.4492

  17. Blume-Kohout, R.: Private communication

    Google Scholar 

  18. Ringbauer, M., Wood, C.J., Modi, K., Gilchrist, A., White, A.G., Fedrizzi, A.: Characterizing quantum dynamics with initial system-environment correlations. Phys. Rev. Lett. 114, 090402 (2015)

    Article  ADS  Google Scholar 

  19. Plenio, M., Huelga, S., Beige, A., Knight, P.: Cavity-loss-induced generation of entangled atoms. Phys. Rev. A 59, 2468–2475 (1999)

    Article  ADS  Google Scholar 

  20. Bose, S., Knight, P., Plenio, M., Vedral, V.: Proposal for teleportation of an atomic state via cavity decay. Phys. Rev. Lett. 83, 5158–5161 (1999)

    Article  ADS  Google Scholar 

  21. Beige, A., Braun, D., Tregenna, B., Knight, P.L.: Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 85, 1762–1765 (2000)

    Article  ADS  Google Scholar 

  22. Diehl, S., Micheli, A., Kantian, A., Kraus, B., Büchler, H.P., Zoller, P.: Quantum states and phases in driven open quantum systems with cold atoms. Nat. Phys. 4, 878–883 (2008)

    Article  Google Scholar 

  23. Barreiro, J.T., Müller, M., Schindler, P., Nigg, D., Monz, T., Chwalla, M., Hennrich, M., Roos, C.F., Zoller, P., Blatt, R.: An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011)

    Article  ADS  Google Scholar 

  24. Cormick, C., Bermudez, A., Huelga, S.F., Plenio, M.B.: Dissipative ground-state preparation of a spin chain by a structured environment. New J. Phys. 15, 073027 (2013)

    Article  ADS  Google Scholar 

  25. Lin, Y., Gaebler, J.P., Reiter, F., Tan, T.R., Bowler, R., Sørensen, A.S., Leibfried, D., Wineland, D.J.: Dissipative production of a maximally entangled steady state of two quantum bits. Nature 504, 415–418 (2013)

    Article  ADS  Google Scholar 

  26. Xu, J.-S., Sun, K., Li, C.-F., Xu, X.-Y., Guo, G.-C., Andersson, E., Lo Franco, R., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Comms. 4, 2851 (2013)

    Google Scholar 

  27. Petruccione, F., Breuer, H.-P.: The theory of open quantum systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  28. Modi, K., Sudarshan, E.C.G.: Role of preparation in quantum process tomography. Phys. Rev. A 81, 052119 (2010)

    Article  ADS  Google Scholar 

  29. Rodríguez-Rosario, C.A., Modi, K., Kuah, A.-M., Shaji, A., Sudarshan, E.C.G.: Completely positive maps and classical correlations. J. Phys. A 41, 205301 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Modi, K.: Preparation of states in open quantum mechanics. Open. Syst. Inf. Dyn. 18, 253–260 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuah, A.-M., Modi, K., Rodríguez-Rosario, C.A., Sudarshan, E.C.G.: How state preparation can affect a quantum experiment: Quantum process tomography for open systems. Phys. Rev. A 76, 042113 (2007)

    Article  ADS  Google Scholar 

  32. Ziman, M.: Quantum process tomography: the role of initial correlations (2006). arXiv:quant-ph/0603166

  33. Carteret, H. A., Terno, D. R., Życzkowski, K.: Dynamics beyond completely positive maps: Some properties and applications. Phys. Rev. A, 77 (2008)

    Google Scholar 

  34. Modi, K.: Operational approach to open dynamics and quantifying initial correlations. Sci. Rep. 2, 581 (2012)

    Article  ADS  Google Scholar 

  35. Wißmann, S., Leggio, B., Breuer, H.-P.: Detecting initial system-environment correlations: Performance of various distance measures for quantum states. Phys. Rev. A 88, 022108 (2013)

    Article  ADS  Google Scholar 

  36. Laine, E.-M., Piilo, J., Breuer, H.-P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)

    Article  ADS  Google Scholar 

  37. Rodríguez-Rosario, C.A., Modi, K., Mazzola, L., Aspuru-Guzik, A.: Unification of witnessing initial system-environment correlations and witnessing non-Markovianity. Europhys. Lett. 99, 20010 (2012)

    Article  ADS  Google Scholar 

  38. Gessner, M., Breuer, H.-P.: Detecting nonclassical system-environment correlations by local operations. Phys. Rev. Lett. 107, 180402 (2011)

    Article  ADS  Google Scholar 

  39. Rossatto, D.Z., Werlang, T., Castelano, L.K., Villas-Boas, C.J., Fanchini, F.F.: Purity as a witness for initial system-environment correlations in open-system dynamics. Phys. Rev. A 84, 042113 (2011)

    Article  ADS  Google Scholar 

  40. Smirne, A., Brivio, D., Cialdi, S., Vacchini, B., Paris, M.G.A.: Experimental investigation of initial system-environment correlations via trace-distance evolution. Phys. Rev. A 84, 032112 (2011)

    Article  ADS  Google Scholar 

  41. Li, C.-F., Tang, J.-S., Li, Y.-L., Guo, G.-C.: Experimentally witnessing the initial correlation between an open quantum system and its environment. Phys. Rev. A 83, 064102 (2011)

    Article  ADS  Google Scholar 

  42. Gessner, M., Ramm, M., Pruttivarasin, T., Buchleitner, A., Breuer, H.-P., Häffner, H.: Local detection of quantum correlations with a single trapped ion. Nat. Phys. 10, 105–109 (2013)

    Article  Google Scholar 

  43. Chiuri, A., Greganti, C., Mazzola, L., Paternostro, M., Mataloni, P.: Linear optics simulation of non-markovian quantum dynamics. Phys. Rev. A 86, 010102 (2012)

    Article  Google Scholar 

  44. Schumacher, B.: Sending quantum entanglement through noisy channels. Phys. Rev. A 54, 2614 (1996)

    Article  ADS  Google Scholar 

  45. Narang, G.: Simulating a single-qubit channel using a mixed-state environment. Phys. Rev. A 75, 032305 (2007)

    Article  ADS  Google Scholar 

  46. Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T., Zeilinger, A.: A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377–15386 (2007)

    Article  ADS  Google Scholar 

  47. Langford, N., Weinhold, T., Prevedel, R., Resch, K., Gilchrist, A.: Demonstration of a simple entangling optical gate and its use in bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005)

    Article  ADS  Google Scholar 

  48. Kitaev, A.Y.: Quantum computations: Algorithms and error correction. Russ. Math. Surv. 52, 1191 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rosgen, B., Watrous, J.: On the hardness of distinguishing mixed-state quantum computations. In: 20th Annual IEEE Conference on Computational Complexity (CCC 2005), 344–354. IEEE (2005)

    Google Scholar 

  50. Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett. 106, 100401 (2011)

    Article  ADS  Google Scholar 

  51. Flammia, S.T., Gross, D., Liu, Y.-K., Eisert, J.: Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators. New J. Phys. 14, 095022 (2012)

    Article  ADS  Google Scholar 

  52. Pollock, F. A., Rodríguez-Rosario, C., Frauenheim, T., Paternostro, M., Modi, K.: Complete framework for efficient characterisation of non-Markovian processes (2015). arXiv:1512.00589

  53. Bylicka, B., Chruscinski, D., Maniscalco, S.: Non-markovianity as a resource for quantum technologies (2013). arXiv:1301.2585

  54. Vinjanampathy, S., Modi, K.: Entropy bounds for quantum processes with initial correlations. Phys. Rev. A 92, 052310 (2015)

    Article  ADS  Google Scholar 

  55. Oreshkov, O., Costa, F., Brukner, C.: Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The second part of this chapter is based on work that was first published in Ref. [18], and I have incorporated large part of the text of that paper. I would particularly like to acknowledge Christopher Wood, who was chiefly responsible for the theory developed for both, reconstruction and analysis, used in that paper, which also forms part of his PhD thesis submitted to the University of Waterloo. I have included much of this work here, as it is a vital component for the experimental application of the introduced technique. Furthermore, I would like to gratefully acknowledge Christopher Wood for introducing me to the tensor network notation and the quantum tomography methodology that I am using throughout this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ringbauer .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ringbauer, M. (2017). Quantum Tomography. In: Exploring Quantum Foundations with Single Photons. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-64988-7_2

Download citation

Publish with us

Policies and ethics