Skip to main content

Research Advancements in Laser Metal Deposition Process

  • Chapter
  • First Online:
Laser Metal Deposition Process of Metals, Alloys, and Composite Materials

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

Laser metal deposition process is an additive manufacturing technologies that utilize laser as its source of energy to fuse and melt materials together layer after layer to produce three dimensional solid part. Laser metal deposition process has gain a lot of popularities in the research community since its inception because of the exciting properties of the power source ‘laser’ and because of the great potential of the process. Laser delivers heat energy in a coherent manner and with low divergence thereby making the intensity of the laser beam to be very high and can be controlled as required thereby concentrating all the intensity at a point of interest. Laser metal deposition process the capability to produce novel product that maybe difficult if not impossible to fabricate using the conventional subtractive manufacturing processes. Laser metal deposition process can help to extend the service life of parts through the innovative repair process. A number of industries have benefited from these exciting technologies which include: aerospace, automobile, medicine and jewelry. This technology is fairly new and it is a promising technology that may change the way machines are produced. The focus of this chapter is to analyze the progress in this important additive manufacturing technology in term of research efforts in this area and the current state of these technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scott J, Gupta N, Wember C, Newsom S, Wohlers T, Caffrey T (2012) Additive manufacturing: status and opportunities. Science and Technology Policy Institute. Available from https://www.ida.org/stpi/occasionalpapers/papers/AM3D_33012_Final.pdf. Accessed on 11 Feb 2017

  2. Wohlers Associates (2011) Additive manufacturing technology, Roadmap for Australia. Available from http://www.enterpriseconnect.gov.au/media/Documents/Publications/Additive%20Manufacturing%20Tech%20Roadmap.pdf. Accessed on 11 Feb 2017

  3. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Revolutionary additive manufacturing: an overview. Lasers Eng 27:161–178

    Google Scholar 

  4. Graf B, Gumenyuk A, Rethmeier M (2012) Laser metal deposition as repair technology for stainless steel and titanium alloys. Phys Proc 39:376–381

    Article  Google Scholar 

  5. Pinkerton AJ, Wang W, Li L (2008) Component repair using laser direct metal deposition. J Eng Manuf 222:827–836

    Article  Google Scholar 

  6. Shukla M, Mahamood RM, Akinlabi ET, Pityana S (2012) Effect of laser power and powder flow rate on properties of laser metal deposited Ti6Al4V. World Acad Sci Technol 6:44–48

    Google Scholar 

  7. Mok SH, Bi G, Folkes J, Pashby I (2008) Deposition of Ti–6Al–4V using a high power diode laser and wire, Part I: investigation on the process characteristics. Surf Coat Technol 202(16):3933–3939

    Article  Google Scholar 

  8. Brandl E, Schoberth A, Leyens C (2012) Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater Sci Eng A 532:295–307

    Article  Google Scholar 

  9. Jun Yu, Rombouts M, Maes G, Motmans F (2012) Material properties of Ti6Al4V parts produced by laser metal deposition. Phys Proc 39(2012):416–424

    Google Scholar 

  10. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Laser metal deposition of Ti6Al4V: a study on the effect of laser power on microstructure and microhardness. In: International multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 994–999

    Google Scholar 

  11. Choi J, Chang Y (2005) Characteristics of laser aided direct metal/material deposition process for tool steel. Int J Mach Tools Manuf 45:597–607

    Article  Google Scholar 

  12. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) The role of transverse speed on deposition height and material efficiency in laser deposited titanium alloy. In: 2013 international multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 876–881

    Google Scholar 

  13. Pityana S, Mahamood RM, Akinlabi ET, Shukla M (2013) Effect of gas flow rate and powder flow rate on properties of laser metal deposited Ti6Al4V. In: 2013 international multi-conference of engineering and computer science (IMECS 2013), March 2013, pp 848–851

    Google Scholar 

  14. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of processing parameters on the porosity properties of laser deposited titanium alloy. In: International multi-conference of engineering and computer science (IMECS 2014)

    Google Scholar 

  15. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the world congress on engineering (2012), vol III, WCE 2012, July 4–6, 2012, London, UK, pp 1593–1597

    Google Scholar 

  16. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Effect of laser power on material efficiency, layer height and width of laser metal deposited Ti6Al4V. In: World congress of engineering and computer science, San Francisco 2012, 24–26 October 2012, pp 1433–1438

    Google Scholar 

  17. Akinlabi ET, Mahamood RM, Shukla M, Pityana S (2012) Effect of scanning speed on material efficiency of laser metal deposited Ti6Al4V. In: World Academy of Science and Technology, Paris 2012, vol 6, pp 58–62

    Google Scholar 

  18. Mahamood RM, Akinlabi ET (2017) Properties of titanium alloy manufactured by laser metal deposition process, in titanium alloys, types. In: Jane P (ed) Properties and research insights. Nova Science Publisher, New York, pp 27–52

    Google Scholar 

  19. Mahamood RM, Akinlabi ET (2017) Effect of scanning speed and powder flow rate on properties of LMD titanium-alloy. Advanced engineering Materials, August, 12, 2016. Springer. Int J Mech Eng Technol. doi:10.1007/s00170-016-9954-9

  20. Mahamood RM, Akinlabi ET (2016) Microstructure and mechanical behaviour of laser metal deposition of titanium alloy. Lasers Eng 35(1–4):27–38

    Google Scholar 

  21. Mahamood RM, Akinlabi ET (2016) Laser Metal Deposition of Ti6Al4V/TiC composites using optimized process parameters. Lasers Eng 35(1–4):139–150

    Google Scholar 

  22. Mahamood RM, Akinlabi ET (2016) Process parameters optimization for material deposition efficiency in laser metal deposited titanium alloy. Lasers Manuf Mater Proces 3(1):9–21. doi:10.1007/s40516-015-0020-5

    Article  Google Scholar 

  23. Mahamood RM, Akinlabi ET (2015) Effect of processing parameters on wear resistance property of laser material deposited titanium -alloy composite. J Optoelectr Adv Mater (JOAM) 17(9–10):1348–1360

    Google Scholar 

  24. Mahamood RM, Akinlabi ET (2015) Laser metal deposition of functionally graded Ti6Al4V/TiC. Mater Des 84:402–410. ISSN:0264-1275, doi:10.1016/j.matdes.2015.06.135, URL:http://www.sciencedirect.com/science/article/pii/S0264127515300265

  25. Mahamood RM, Akinlabi ET (2015) Effect of laser power and powder flow rate on the wear resistance behaviour of laser metal deposited TiC/Ti6Al4V composites. Mater Today Proc 2(4–5):2679–2686

    Article  Google Scholar 

  26. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Characterization of laser deposited Ti6A4V/TiC composite. Lasers Eng 29(3–4):197–213

    Google Scholar 

  27. Mahamood RM, Akinlabi ET, Akinlabi SA (2014) Laser power and scanning speed influence on the mechanical property of laser metal deposited titanium-alloy. Lasers Manuf Mater Proces 2(1):43–55

    Article  Google Scholar 

  28. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2014) Characterizing the effect of processing parameters on the porosity of laser deposited titanium alloy powder, IMECS 2014

    Google Scholar 

  29. Mahamood RM, Akinlabi ET (2017) A review of laser additive manufacturing of titanium and its alloys. In: Perry J (ed) Titanium alloys, types, properties and research insights. Nova science Publisher, New York, pp 1–26

    Google Scholar 

  30. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Scanning velocity influence on microstructure, microhardness and wear resistance performance on laser deposited Ti6Al4V/TiC composite. Mater Des 50:656–666

    Article  Google Scholar 

  31. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Material efficiency of laser metal deposited Ti6Al4V: effect of laser power. Eng Lett 21:1, EL_21_1_03. Available online at http://www.engineeringletters.com/issues_v21/issue_1/EL_21_1_03.pdf

  32. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2013) Characterizing the effect of laser power density on microstructure, microhardness and surface finish of laser deposited titanium alloy. J Manuf Sci Eng 135(6):064502–064502-4. doi:10.1115/1.4025737

  33. Jones J, Whittaker M, Buckingham R, Johnston R, Bache M, Clark D (2017) Microstructural characterisation of a nickel alloy processed via blown powder direct laser deposition (DLD). Mater Des 117(5):47–57

    Article  Google Scholar 

  34. Wang X, Deng D, Yi H, Haiyan X, Yang S, Zhang H (2017) Influences of pulse laser parameters on properties of AISI316L stainless steel thin-walled part by laser material deposition. Opt Laser Technol 92(1):5–14

    Article  Google Scholar 

  35. de Damborenea JJ, Larosa MA, Arenas MA, Hernández-López JM, Jardini AL, Ierardi MCF, Zavaglia CAC, Filho RM, Conde A (2015) Functionalization of Ti6Al4V scaffolds produced by direct metal laser for biomedical applications. Mater Des 83:6–13

    Google Scholar 

  36. Li F, Gao Z, Li L, Chen Y (2016) Microstructural study of MMC layers produced by combining wire and coaxial WC powder feeding in laser direct metal deposition. Opt Laser Technol 77:134–143

    Article  Google Scholar 

  37. Da Sun S, Liu Q, Brandt M, Luzin V, Cottam R, Janardhana M, Clark G (2014) Effect of laser clad repair on the fatigue behaviour of ultra-high strength AISI 4340 steel. Mater Sci Eng A 606(12):46–57

    Article  Google Scholar 

  38. Lin X, Cao Y, Xiaoyu W, Yang H, Chen J, Huang W (2012) Microstructure and mechanical properties of laser forming repaired 17-4PH stainless steel. Mater Sci Eng A 553(15):80–88

    Article  Google Scholar 

  39. Rottwinkel B, Nölke C, Kaierle S, Wesling V (2014) Crack repair of single crystal turbine blades using laser cladding technology. Proc CIRP 22:263–267

    Article  Google Scholar 

  40. Graf B, Ammer S, Gumenyuk A, Rethmeier M (2013) Design of experiments for laser metal deposition in maintenance. Rep Overhaul Appl Proc CIRP 11:245–248

    Article  Google Scholar 

  41. Wen P, Feng Z, Zheng S (2015) Formation quality optimization of laser hot wire cladding for repairing martensite precipitation hardening stainless steel. Opt Laser Technol 65:180–188

    Article  Google Scholar 

  42. Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Cleaner Prod 80:170–178

    Google Scholar 

  43. Liu Q, Wang Y, Zheng H, Tang K, Li H, Gong S (2016) TC17 titanium alloy laser melting deposition repair process and properties. Opt Laser Technol 82:1–9

    Article  Google Scholar 

  44. Lourenço JM, Da Sun S, Sharp K, Luzin V, Klein AN, Wang CH, Brandt M (2016) Fatigue and fracture behavior of laser clad repair of AerMet® 100 ultra-high strength steel. Int J Fatigue 85:18–30

    Article  Google Scholar 

  45. Zhao Z, Chen J, Tan H, Lin X, Huang W (2017) Evolution of plastic deformation and its effect on mechanical properties of laser additive repaired Ti64ELI titanium alloy. Opt Laser Technol 92(1):36–43

    Article  Google Scholar 

  46. Paydas H, Mertens A, Carrus R, Lecomte-Beckers J, Tchoufang Tchuindjang J (2015) Laser cladding as repair technology for Ti–6Al–4V alloy: influence of building strategy on microstructure and hardness. Mater Des 85:497–510

    Google Scholar 

  47. Kattire P, Paul S, Singh R, Yan W (2015) Experimental characterization of laser cladding of CPM 9V on H13 tool steel for die repair applications. J Manuf Proces 20(Part 3):492–499

    Article  Google Scholar 

  48. Wen P, Cai Z, Feng Z, Wang G (2015) Microstructure and mechanical properties of hot wire laser clad layers for repairing precipitation hardening martensitic stainless steel. Opt Laser Technol 75:207–213

    Article  Google Scholar 

  49. Raju R, Duraiselvam M, Petley V, Verma S, Rajendran R (2015) Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater Sci Eng A 643:64–71. ISSN:0921-5093

    Google Scholar 

  50. Liu Y, Bobek T, Klocke F (2015) Laser path calculation method on triangulated mesh for repair process on turbine parts. Comput Aided Des 66:73–81

    Article  Google Scholar 

  51. Petrat T, Graf B, Gumenyuk A, Rethmeier M (2016) Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718. Phys Proc 83:761–768

    Article  Google Scholar 

  52. Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing—enabling circular economy. Phys Proc 83:752–760

    Article  Google Scholar 

  53. He B, Xiang-Jun Tian X, Cheng JL, Wang H-M (2017) Effect of weld repair on microstructure and mechanical properties of laser additive manufactured Ti-55511 alloy. Mater Des 119(5):437–445

    Article  Google Scholar 

  54. Wei S, Wang G, Jianchao Yu, Rong Y (2017) Competitive failure analysis on tensile fracture of laser-deposited material for martensitic stainless steel. Mater Des 118:15

    Article  Google Scholar 

  55. Sui S, Chen J, Zhang R, Ming X, Liu F, Lin X (2017) The tensile deformation behavior of laser repaired Inconel 718 with a non-uniform microstructure. Mater Sci Eng A 688(14):480–487

    Article  Google Scholar 

  56. Ding Y, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comp Integr Manuf 44:67–76

    Article  Google Scholar 

  57. Raju R, Duraiselvam M, Petley V, Verma S, Rajendran R (2015) Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater Sci Eng A 643(3):64–71

    Article  Google Scholar 

  58. Onwubolu GC, Davim JP, Oliveira C, Cardoso A (2007) Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Opt Laser Technol 39:1130–1134

    Article  Google Scholar 

  59. Balu P, Leggett P, Hamid S, Kovacevic R (2013) Multi-response optimization of laser-based powder deposition of multi-track single layer Hastelloy C-276. Mater Manuf Proces 28:173–182

    Article  Google Scholar 

  60. Zhang Q, Anyakin M, Zhuk R, Pan Y, Kovalenko V, Yao J (2012) Application of regression designs for simulation of laser cladding. Phys Proc 39:921–927

    Article  Google Scholar 

  61. Toyserkani E, Khajepour A, Corbin S (2002) Application of experimental-based modeling to laser cladding. J Laser Appl 14:165–173

    Article  Google Scholar 

  62. Hua Y, Choi J (2005) Adaptive direct metal/material deposition process using a fuzzy logic-based controller. J Laser Appl 17:200–210

    Article  Google Scholar 

  63. Qi H, Mazumder J, Ki H (2006) Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 100:024903

    Article  Google Scholar 

  64. Kumar S, Sharma V, Choudhary AKS, Chattopadhyaya S, Hloch S (2013) Determination of layer thickness in direct metal deposition using dimensional analysis. Int J Adv Manuf Technol 67(9–12):2681–2687

    Article  Google Scholar 

  65. Sun Y, Hao M (2012) Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd:YAG laser. Opt Lasers Eng 50:985–995

    Article  Google Scholar 

  66. El Cheikh H, Courant B, Branchu S, Hascoët JY, Guillen R (2012) Analysis and prediction of single laser tracks geometrical characteristics in coaxial laser cladding process. Opt Lasers Eng 50:413–422

    Google Scholar 

  67. Davim JP, Oliveira C, Cardoso A (2008) Predicting the geometric form of clad in laser cladding by powder using multiple regression analysis (MRA). Mater Des 29:554–557

    Article  Google Scholar 

  68. Ocelik V, de Oliveira U, de Boer M, de Hosson JTM (2007) Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surf Coat Technol 201:5875–5883

    Article  Google Scholar 

  69. Davim JP, Oliveira C, Cardoso A (2006) Laser cladding: an experimental study of geometric form and hardness of coating using statistical analysis. Proc Inst Mech Eng Part B 220:1549–1554

    Article  Google Scholar 

  70. de Oliveira U, Ocelik V, De Hosson JTM (2005) Analysis of coaxial laser cladding processing conditions. Surf Coat Technol 197:127–136

    Google Scholar 

  71. Felde I, Reti T, Zoltan K, Costa L, Colago R, Vilar R, Vero B (2003) A simple technique to estimate the processing window for laser clad coatings. In: Surface engineering coatings and heat treatments 2002: proceedings of the 1st ASM International Surface Engineering and the 13th IFHTSE Congress, ASM International, OH, pp 237–242

    Google Scholar 

  72. Huang YL, Liu J, Ma NH, Li JG (2006) Three-dimensional analytical model on laser-powder interaction during laser cladding. J Laser Appl 18:42–46

    Article  Google Scholar 

  73. Fu Y, Loredo A, Martin B, Vannes AB (2002) A theoretical model for laser and powder particles interaction during laser cladding. J Mater Process Technol 128:106–112

    Article  Google Scholar 

  74. Diniz Neto OO, Vilar R (2002) Physical-computational model to describe the interaction between a laser beam and a powder jet in laser surface processing. J Laser Appl 14:46–51

    Google Scholar 

  75. Yang N (2009) Concentration model based on movement model of powder flow in coaxial laser cladding. Opt Laser Technol 41:94–98

    Article  Google Scholar 

  76. Neto OOD, Alcalde AM, Vilar R (2007) Interaction of a focused laser beam and a coaxial powder jet in laser surface processing. J Laser 19:84–88

    Article  Google Scholar 

  77. Pan H, Liou F (2005) Numerical simulation of metallic powder flow in a coaxial nozzle for the laser aided deposition process. J Mater Process Technol 168:230–244

    Article  Google Scholar 

  78. Pan H, Landers RG, Liou F (2006) Dynamic modeling of powder delivery systems in gravity-fed powder feeders. ASME J Manuf Sci Eng 128:337–345

    Article  Google Scholar 

  79. Ibarra-Medina J, Pinkerton A (2011) Numerical investigation of powder heating in coaxial laser metal deposition. Surf Eng 27:754–761

    Article  Google Scholar 

  80. Li HS, Yang XC, Lei JB, Wang YS (2005) A numerical simulation of movement powder flow and development of the carrier-gas powder feeder for laser repairing. In: Conference on material processing and manufacturing II, SPIE Digital Library, Beijing, China, 2005, pp 557–564

    Google Scholar 

  81. Lin JM (2000) Numerical simulation of the focused powder streams in coaxial laser cladding. J Mater Process Technol 105:17–23

    Article  Google Scholar 

  82. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70

    Article  Google Scholar 

  83. Wen SY, Shin YC, Murthy JY, Sojka PE (2009) Modeling of coaxial powder flow for the laser direct deposition process. Int J Heat Mass Transfer 52:5867–5877

    Article  MATH  Google Scholar 

  84. Kovalev OB, Zaitsev AV, Novichenko D, Smurov I (2011) Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process. J Therm Spray Technol 20:465–478

    Article  Google Scholar 

  85. Zekovic S, Dwivedi R, Kovacevic R (2007) Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. Int J Mach Tools Manuf 47:112–123

    Article  Google Scholar 

  86. Ibarra-Medina J, Pinkerton AJ (2010) CFD model of the laser, coaxial powder stream and substrate interaction in laser cladding. Phys Proc 5:337–346

    Article  Google Scholar 

  87. Tabernero I, Lamikiz A, Martinez S, Ukar E, López de Lacalle LN (2012) Modelling of energy attenuation due to powder flow-laser beam interaction during laser cladding process. J Mater Process Technol 212:516–522

    Google Scholar 

  88. Tabernero I, Lamikiz A, Ukar E, López de Lacalle LN, Angulo C, Urbikain G (2010) Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J Mater Process Technol 210:2125–2134

    Google Scholar 

  89. Partes K (2009) Analytical model of the catchment efficiency in high speed laser cladding. Surf Coat Technol 204:366–371

    Article  Google Scholar 

  90. Fathi A, Toyserkani E, Khajepour A, Durali M (2006) Prediction of melt pool depth and dilution in laser powder deposition. J Phys D 39:2613–2623

    Article  Google Scholar 

  91. Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. Trans ASME 68:849–866

    Google Scholar 

  92. Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Technol 32:34–41

    Article  Google Scholar 

  93. El Cheikh H, Courant B, Hascoët JY, Guillén R (2012) Prediction and analytical description of the single laser track geometry in direct laser fabrication from process parameters and energy balance reasoning. J Mater Process Technol 212:1832–1839

    Google Scholar 

  94. Zhu G, Li D, Zhang A, Pi G, Tang Y (2011) The influence of standoff variations on the forming accuracy in laser direct metal deposition. Rapid Prototyping J 17:98–106

    Article  Google Scholar 

  95. Zhu G, Li D, Zhang A, Pi G, Tang Y (2012) The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition. Opt Laser Technol 44:349–356

    Article  Google Scholar 

  96. Ahsan MN, Pinkerton AJ, Moat RJ, Shackleton J (2011) A comparative study of laser direct metal deposition characteristics using gas and plasma-atomized Ti-6Al-4V powders. Mater Sci Eng A 528:7648–7657

    Article  Google Scholar 

  97. Zhou S, Dai X, Zheng H (2011) Analytical modeling and experimental investigation of laser induction hybrid rapid cladding for Ni-based WC composite coatings. Opt Laser Technol 43:613–621

    Article  Google Scholar 

  98. Ahsan MN, Pinkerton AJ (2011) An analytical-numerical model of laser direct metal deposition track and microstructure formation. Modell Simul Mater Sci Eng 19:055003

    Article  Google Scholar 

  99. Chan C, Mazumder J, Chen MM (1983) Fluid flow in laser melted pool. In: Modeling of casting and welding processes II, New England College, Henniker, NH, 1983, pp 297–316

    Google Scholar 

  100. Mahapatra MM, Li L (2012) Modeling of pulsed-laser superalloy powder deposition using moving distributed heat source. In: Proceedings of the Minerals, Metals & Materials Society Extraction & Processing Division (EPD) Congress 2012, John Wiley & Sons Inc., Hoboken, New Jersey, pp 113–120

    Google Scholar 

  101. Neela V, De A (2009) Three-dimensional heat transfer analysis of LENSTM process using finite element method. Int J Adv Manuf Technol 45:935–943

    Article  Google Scholar 

  102. Ye R, Smugeresky JE, Zheng B, Zhou Y, Lavernia EJ (2006) Numerical modeling of the thermal behavior during the LENSVR process. Mater Sci Eng, A 428:47–53

    Article  Google Scholar 

  103. Wang L, Felicelli S (2006) Analysis of thermal phenomena in LENS TM deposition. Mater Sci Eng A 435–436:625–631

    Article  Google Scholar 

  104. Takeshita K, Matsunawa A (2001) Numerical simulation of the molten-pool formation during the laser surface-melting process. Metall Mater Trans B 32:949–959

    Article  Google Scholar 

  105. Costa L, Vilar R, Reti T, Colaco R, Deus AM, Felde I (2005) Simulation of phase transformations in steel parts produced by laser powder deposition. In: 4th Hungarian Conference on Materials Science, Testing and Informatics, October 12–14 2003. Trans Tech Publications, Switzerland, pp 315–320

    Google Scholar 

  106. Costa L, Vilar R, Reti T, Deus AM (2005) Rapid tooling by laser powder deposition: process simulation using finite element analysis. Acta Mater 53:3987–3999

    Article  Google Scholar 

  107. Vasinonta A, Griffith ML, Beuth JL (2000) A process map for consistent build conditions in the solid freeform fabrication of thin-walled structures. J Manuf Sci Eng 123:615–622

    Article  Google Scholar 

  108. Chen TB, Zhang YW (2006) Analysis of melting in a sub-cooled two component metal powder layer with constant heat flux. Appl Therm Eng 26:751–765

    Article  Google Scholar 

  109. Suárez A, Tobar MJ, Yáñez A, Pérez I, Sampedro J, Amigó V, Candel JJ (2011) Modeling of phase transformations of Ti6Al4V during laser metal deposition. Phys Proc 12A:666–673

    Google Scholar 

  110. Kumar S, Roy S (2008) Development of a theoretical process map for laser cladding using two-dimensional conduction heat transfer model. Comput Mater Sci 41:457–466

    Article  Google Scholar 

  111. Safdar S, Pinkerton AJ, Li L, Sheikh MA, Withers PJ (2013) An anisotropic enhanced thermal conductivity approach for modelling laser melt pools for Ni-base super alloys. Appl Math Model 37:1187–1195

    Article  MATH  Google Scholar 

  112. Choi J, Han L, Hua Y (2005) Modeling and experiments of laser cladding with droplet injection. ASME Trans J Heat Transfer 127:978–986

    Article  Google Scholar 

  113. Morville S, Carin M, Peyre P, Gharbi M, Carron D, Le Masson P, Fabbro R (2012) 2D longitudinal modeling of heat transfer and fluid flow during multilayered direct laser metal deposition process. J Laser Appl 24:032008

    Article  Google Scholar 

  114. Kong F, Kovacevic R (2010) Modeling of heat transfer and fluid flow in the laser multilayered cladding process. Metall Mater Trans B 41:1310–1320

    Article  Google Scholar 

  115. Han L, Liou FW (2004) Numerical investigation of the influence of laser beam mode on melt pool. Int J Heat Mass Transfer 47:4385–4402

    Article  MATH  Google Scholar 

  116. Toyserkani E, Khajepour A, Corbin S (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Opt Lasers Eng 41:849–867

    Article  Google Scholar 

  117. Toyserkani E, Khajepour A, Corbin S (2003) Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feed rate and travel speed on the process. J Laser Appl 15:153–160

    Article  Google Scholar 

  118. He X, Mazumder J (2007) Transport phenomena during direct metal deposition. J Appl Phys 101:053113

    Article  Google Scholar 

  119. He X, Yu G, Mazumder J (2010) Temperature and composition profile during double-track laser cladding of H13 tool steel. J Phys D 43:015502

    Article  Google Scholar 

  120. Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D 41:025403

    Article  Google Scholar 

  121. Wen SY, Shin YC (2010) Modeling of transport phenomena during the coaxial laser direct deposition process. J Appl Phys 108:044908

    Article  Google Scholar 

  122. Wen SY, Shin YC (2011) Comprehensive predictive modeling and parametric analysis of multitrack direct laser deposition processes. J Laser Appl 23:022003

    Article  Google Scholar 

  123. Wen S, Shin YC (2011) Modeling of transport phenomena in direct laser deposition of metal matrix composite. Int J Heat Mass Transfer 54:5319–5326

    MATH  Google Scholar 

  124. Ibarra-Medina J, Vogel M, Pinkerton AJ (2011) A CFD model of laser cladding: from deposition head to melt pool dynamics. In: 30th international congress on applications of lasers and electro-optics (ICALEO), LIA, Orlando, FL, p 708

    Google Scholar 

  125. Han L, Phatak KM, Liou FW (2005) Modeling of laser deposition and repair process. J Laser Appl 17:89–99

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by University of Johannesburg Research council, University of Ilorin and L’Oreal-UNESCO for Women in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasheedat Modupe Mahamood .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mahamood, R.M. (2018). Research Advancements in Laser Metal Deposition Process. In: Laser Metal Deposition Process of Metals, Alloys, and Composite Materials. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-64985-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64985-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64984-9

  • Online ISBN: 978-3-319-64985-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics