Skip to main content

Laser Basics and Laser Material Interactions

  • Chapter
  • First Online:

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

LASER is an acronym termed Light Amplification by Simulated Emission of Radiation. The development of laser has evolved since its inception and its application has spanned every aspect of human Endeavour. Laser is a phenomenon that has revolutionized the human world. The unique properties of laser such as monochromaticity, directionality and coherency, are responsible for its being favoured in all its areas of application. The application areas span from the smallest laser found in the compact disc player to the large laser found in the industries. The brief history of laser and the basic principle of laser generation are presented in this chapter. Properties of laser, different types of laser, laser safety and their areas of applications are explained. The types of laser that are used in material processing are also presented. The laser material interaction and how important these lasers are in material processing and their use in additive manufacturing technologies, a revolutionary manufacturing process, are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haken H (1983) Laser theory. Springer, Berlin Heidelberg

    Book  Google Scholar 

  2. Yamashita K, Taniguchi H, Yuyama S, Oe K, Sun J, Mataki H (2007) Continuous-wave simulated emission and optical amplification in europium (III)-aluminum nanocluster-doped polymeric waveguide. Appl Phys Lett 91(8):081115–081117

    Article  Google Scholar 

  3. Siegman AE (1986) Lasers. USA, University Science Books, Maple-vail group Manufacturing Group

    Google Scholar 

  4. Silfvast WT (1996) Laser fundamentals. Cambridge: Cambridge University Press

    Google Scholar 

  5. Planck M (1900) Über eine Verbesserung der Wien’schen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesellschaft 2:202–204. Translated in ter Haar D (1967) On an Improvement of Wien’s Equation for the Spectrum. The Old Quantum Theory (PDF). Pergamon Press, pp 79–81. LCCN 66029628

    Google Scholar 

  6. Planck M (1900) Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft. 2:237–245. Translated in ter Haar D (1967) The Old Quantum Theory (PDF). Pergamon Press, p 82. LCCN 66029628

    Google Scholar 

  7. Planck M (1900) Entropie und Temperatur strahlender Wärme. Annalen der Physik. 306(4):719–737. Bibcode:1900AnP…306..719P. doi:10.1002/andp.19003060410

  8. Planck M (1900) Über irreversible Strahlungsvorgänge. Annalen der Physik. 306(1):69–122. Bibcode:1900AnP…306…69P. doi:10.1002/andp.19003060105

  9. Planck M (1901) Über das Gesetz der Energieverteilung im Normalspektrum. Annalen der Physik. 4:553. Bibcode:1901AnP…309..553P. doi:10.1002/andp.19013090310. Translated in Ando K, On the Law of Distribution of Energy in the Normal Spectrum (PDF). Retrieved 2011-10-13

  10. Mehra J, Rechenberg H (1982) The historical development of quantum theory, vol 1. Springer. Chapter 1. ISBN:978-0-387-90642-3

    Google Scholar 

  11. Yang F, Hamilton JH (2010) Modern atomic and nuclear physics. World Scientific. ISBN:978-981-4277-16-7

    Google Scholar 

  12. Howard DA (ed) (2014) [First published 11 February 2004], Einstein’s philosophy of science. Stanford Encyclopedia of Philosophy (website), The Metaphysics Research Lab, Center for the Study of Language and Information (CSLI), Stanford University. Retrieved 2015–02–04

    Google Scholar 

  13. Einstein A (1917) Zur Quantentheorie der Strahlung. Physikalische Zeitschrift. 18:121–128. Bibcode:1917PhyZ…18..121

    Google Scholar 

  14. Steen WM (1998) Laser materials processing, 2nd ed. Springer, London

    Google Scholar 

  15. Paschotta R (2008) Field guide to lasers. SPIE Press, Bellingham, WA

    Google Scholar 

  16. The Nobel Prize in Physics 1966 presentation speech by professor Ivar Waller. Available at: http://www.nobelprize.org/nobel_prizes/physics/laureates/1966/press.html Retrieved January 1, 2017

  17. Bertolotti M (2015) Masers and lasers, second edition: an historical approach. CRC Press, pp 89–91. ISBN:9781482217803

    Google Scholar 

  18. American Institute of Physics Oral History Interview with Joseph Weber. Available at: https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4941. Accessed on 29th October 2016

  19. Townes CH (1999) How the laser happened: adventures of a scientist. Oxford University Press, Oxford, pp 69–70. ISBN:9780195122688

    Google Scholar 

  20. Pakhomov AV, Molevich NE, Krents AA, Anchikov DA (2016) Intrinsic performance-limiting instabilities in two-level class-B broad-area lasers. Opt Commun 372(1):14–21

    Article  Google Scholar 

  21. Gould RG (1959) The LASER, light amplification by Stimulated emission of radiation. In: Franken PA, Sands RH (eds) The Ann Arbor Confer

    Google Scholar 

  22. Maiman TH (1960) Stimulated optical radiation in ruby. Nature. 187(4736):493–494. Bibcode:1960Natur.187..493M. doi:10.1038/187493a0. Conference on optical pumping, the University of Michigan, 15 June through 18 June 1959, p 128

  23. Wang C, Li X, Jin H, Hui Y, Yang J, Jiang X (2017) Silicon reflectors for external cavity lasers based on ring resonators. Opt Commun 383(15):453–459

    Article  Google Scholar 

  24. Rusu SS, Oloinic T, Tronciu VZ (2016) Quantum dots lasers dynamics under the influence of double cavity external feedback. Opt Commun 381(15):140–145

    Article  Google Scholar 

  25. Thomas G, Isaacs R (2011) Basic principles of lasers. Anaesth Intensive Care Med 12(12):574–577

    Article  Google Scholar 

  26. Stoker MR (2005) Basic principles of lasers. Anaesth Intensive Care Med 6(12):402–404

    Article  Google Scholar 

  27. Yan C, Shi J, Li P (2017) High power unidirectional-emission micro-cavity lasers and their array. Optik Int J Light Electron Opt. 130:708–713. Available online at http://0-dx.doi.org.ujlink.uj.ac.za/10.1016/j.ijleo.2016.10.113

  28. Liu J, Wang L, Han W, Honghao X, Zhong D, Teng B (2016) Plate-shaped Yb: LuPO4 crystal for efficient CW and passively Q-switched microchip lasers. Opt Mater 60:114–118

    Article  Google Scholar 

  29. Brian M. Walsh, Nonlinear mixing of Nd: YAG lasers; harmonic and sum frequency generation. Opt Mater. Available online 26 July 2016, ISSN: 0925-3467

    Google Scholar 

  30. Yao C, Xu TH, Wan WJ, Li H, Cao JC (2016) Single-mode tapered terahertz quantum cascade lasers with lateral gratings. Solid-State Electron 122:52–55

    Article  Google Scholar 

  31. Villagómez R, Liu H (2016) Construction of a scalable RF power supply for small CO2 waveguide lasers. Optik Int J Light Electron Opt 127(16):6641–6646

    Article  Google Scholar 

  32. Siqueira RHM, Carvalho SM, Kam IKL, Riva R, Lima MSF (2016) Non-contact sheet forming using lasers applied to a high strength aluminum alloy. J Mater Res Technol 5(3):275–281

    Google Scholar 

  33. Sun M, Eppelt U, Hartmann C, Schulz W, Zhu J, Lin Z (2016) Damage morphology and mechanism in ablation cutting of thin glass sheets with picosecond pulsed lasers. Opt Laser Technol 80:227–236

    Article  Google Scholar 

  34. Stoian R, D’Amico C, Bhuyan MK, Cheng G (2016) [INVITED] Ultrafast laser photoinscription of large-mode-area waveguiding structures in bulk dielectrics: Invited paper for the section: hot topics in ultrafast lasers. Opt Laser Technol 80:98–103

    Article  Google Scholar 

  35. Li S, Wang Y, Zhiwei L, Ding L, Cui C, Chen Y, Pengyuan D, Ba D, Zheng Z, Yuan H, Shi L, Bai Z, Liu Z, Zhu C, Dong Y, Zhou L (2016) Spatial beam shaping for high-power frequency tripling lasers based on a liquid crystal spatial light modulator. Opt Commun 367(15):181–185

    Article  Google Scholar 

  36. Pinkerton AJ (2016) [INVITED] Lasers in additive manufacturing. Opt Laser Technol 78(Part A):25–32

    Google Scholar 

  37. Wang L, Chong A, Haus JW (2017) Numerical modeling of mode-locked fiber lasers with a fiber-based saturable-absorber. Opt Commun 383(15):386–390

    Article  Google Scholar 

  38. Li SG, Gong Q, Wang XZ, Cao CF, Zhou ZW, Wang HL (2016) Cavity length and stripe width dependent lasing characteristics of InAs/InP(1 0 0) quantum dot lasers. Infrared Phys Technol 75:51–55

    Article  Google Scholar 

  39. Navid HA, Irani E, Sadighi-Bonabi R (2016) Possibility of methane conversion into heavier hydrocarbons using nanosecond lasers. Spectrochim Acta Part A Mol Biomol Spectrosc 156(5):118–122

    Article  Google Scholar 

  40. Belghachem N, Mlynczak J (2016) Estimation method of the optimal reflection of the output coupler for cw generation over a range of pump power for three level microchip lasers. Optik Int J Light Electron Optics 127(3):1320–1322

    Article  Google Scholar 

  41. Walsh BM, Lee HR, Barnes NP (2016) Mid infrared lasers for remote sensing applications. J Lumin 169(Part B):400–405

    Google Scholar 

  42. Grivas C (2016) Optically pumped planar waveguide lasers: Part II: gain media, laser systems, and applications. Prog Quantum Electron 45–46:3–160

    Google Scholar 

  43. Bauerele D (2011) Laser processing and chemistry. Springer, Berlin

    Google Scholar 

  44. Paschotta R (2008) Encyclopedia of laser physics and technology. Wiley-VCH, Berlin

    Google Scholar 

  45. Liseykina TV, Bauer D (2012) Plasma formation dynamics in intense laser-droplet interaction. Available from: http://arxiv.org/pdf/1209.5948v3.pdf. Accessed on 2nd January 2013

  46. Berkmanns J, Faerber M (2010) Laser basics. BOC. Available from: https://boc.com.au/boc_sp/downloads/gas_brochures/BOC_216121_Laser%20Basics_v7.pdf. Accessed on 19 February 2013

Download references

Acknowledgements

This work was supported by University of Johannesburg research council, University of Ilorin and the L’OREAL-UNESCO for Women in Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Mahamood .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mahamood, R.M. (2018). Laser Basics and Laser Material Interactions. In: Laser Metal Deposition Process of Metals, Alloys, and Composite Materials. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-319-64985-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64985-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64984-9

  • Online ISBN: 978-3-319-64985-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics