Skip to main content

Recent Trends in Identification and Molecular Characterization of Rhizobia Species

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

Nutrient enrichment of soils by nitrogen-fixing symbiotic bacteria present in legumes has been known for centuries. The symbiosis between the root nodule bacteria of the genus Rhizobium and legumes results in the fixation of atmospheric nitrogen in root nodules. This symbiotic relationship is of special significance to legume husbandry as seed inoculation with effective strains of Rhizobium can meet the nitrogen requirements of the legume to achieve increased yields. Rhizobia are Gram-negative soil bacteria which are able specifically to induce nitrogen-fixing nodules on the roots of leguminous plants. A myriad of advances have been made in the understanding of both plant and bacterial genomes, the biochemistry of the symbiosis, plant and bacterial signaling, and the measurement of nitrogen fixation. However, knowledge of the ecology of the bacterial symbiont has lagged behind, mainly due to a lack of practical techniques that could be used to monitor and assess the performance of these bacteria in the field. The development of practical techniques, while providing knowledge of the success or failure of specific strains in a range of environments, has not allowed insight into the nature of the pre-existing rhizobial populations in these sites, nor the interaction between marked strains and the background population. The advent of molecular techniques has revolutionized the study of Rhizobium. In addition, molecular techniques have increased the basic knowledge of how individual strains and populations of root nodule bacteria respond to changes in the environment and how genetic diversity evolves in field sites over time. This chapter focuses on recently developed molecular techniques and other advanced technologies of genomics, proteomics, and transcriptomics that hold promise for continuing to develop our understanding of Rhizobium ecology and how these can be used to address a range of applied problems to yield new insights into rhizobial life in soil and as legume symbionts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abi-Ghanem R, Smith JL, Vandemark GJ (2013) Diversity of Rhizobium leguminosarum from pea fields in Washington state. ISRN Soil Sci 2013:1–7

    Article  Google Scholar 

  • Adiguzel A (2006) Molecular characterization of thermophilic bacteria isolated from water samples taken from various thermal plants. PhD Thesis, Ataturk University, Graduate School at Natural and Applied Sciences, Erzurum, Turkey

    Google Scholar 

  • Ahmad MH, Eaglesham ARJ, Hassouna S (1981) Examining serological diversity of “cowpea” rhizobia by the ELISA technique. Arch Microbiol 130:281–287

    Article  Google Scholar 

  • Ahmed THM, Abdelmageed MS (2015) Diversity of Rhizobium leguminosarum bv. Viceae strains isolated from different schemes in Shendi area. Ext J Appl Sci 3(1):1–10

    Google Scholar 

  • Al-Judy NJ, Majeed RE (2013) Morphological, biochemical and molecular characterization of ten rhizobial bacteria isolates. Iraqi J Sci 54(2):280–287

    Google Scholar 

  • Amarger N (2001) Rhizobia in the field. Adv Agron 73:109–168

    Article  CAS  Google Scholar 

  • Assmus B, Schloter M, Kirchhof G, Hutzler P, Hartmann A (1997) Improved in situ tracking of rhizosphere bacteria using dual staining with fluorescence-labeled antibodies and rRNA-targeted oligonucleotides. Microb Ecol 33:32–40

    Article  CAS  PubMed  Google Scholar 

  • Babic KH, Schauss K, Hai B, Sikora S, Reazepovic S, Radl V, Schloter M (2008) Influence of different Sinorhizobium meliloti inocula on abundance of genes involved in nitrogen transformation in the rhizosphere of alfalfa (Medicago sativa L.). Environ Microbiol 10(11):2922–2930. doi:10.1111/j.1462-2920.2008.01762.x

    Article  CAS  PubMed  Google Scholar 

  • Bakhoum N, Roux CL, Diouf D, Kane A, Ndoye F, Fall D, Duponnois R, Noba K, Sylla SN, Galiana A (2014) Distribution and diversity of rhizobial populations associated with Acacia senegal (L) wild. Provenances in Senegalese arid and semiarid regions. Open J For 4(2):136–143

    Google Scholar 

  • Bashan Y, Bashan LE (2005) Plant growth promoting. In: Hillel D (ed) Encyclopedia of soils in the environment, 1st edn. Elsevier, Oxford, pp 103–115

    Chapter  Google Scholar 

  • Bastida F, Algora C, Hernández T, García C (2012) Feasibility of a cell separation–proteomic based method for soils with different edaphic properties and microbial biomass. Soil Biol Biochem 45:136–138

    Article  CAS  Google Scholar 

  • Bizarro MJ, Giongo A, Vargas LK, Roesch LFW, Gano KA, De Sá ELS, Selbach PA (2011) Genetic variability of soybean Bradyrhizobia populations under different soil managements. Biol Fertil Soil 47:357–362

    Article  Google Scholar 

  • Boakye EY, Lawson IYD, Danso SKA, Offei SK (2016) Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis 69:89–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Bontemps C, Golfier G, Gris-Liebe C, Carrere S, Talini L, Boivin-Masson C (2005) Microarray based detection and typing of Rhizobium nodulation gene nodC: potential of DNA arrays to diagnose biological functions of interest. Appl Environ Microbiol 71(12):8042–8048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS Microbiol Ecol 80:534–547

    Article  CAS  PubMed  Google Scholar 

  • Costa FM, Schiavo JA, Brasil MS, Leite J, Xavier GR, Fernandes PI Jr (2014) Phenotypic and molecular fingerprinting of fast growing rhizobia of field grown pigeonpea from the eastern edge of the Brazilian Pantanal. Genet Mol Res 13(1):469–482

    Article  CAS  PubMed  Google Scholar 

  • Crozat Y, Cleyet-Marel JC, Corman A (1987) Use of the fluorescent antibody technique to characterize equilibrium survival concentrations of Bradyrhizobium japonicum strains in soil. Biol Fertil Soil 4:85–90

    Google Scholar 

  • Dai J, Liu X, Wang Y (2012) Genetic diversity and phylogeny of rhizobia isolated from Caragana microphylla growing in desert soil in Ningxia, China. Genet Mol Res 11(3):2683–2693

    Article  CAS  PubMed  Google Scholar 

  • de Freitas ADS, Borges WL, de Morais Andrade MM, Sampaio EVSB, de Rosália e Silva Santos CE, Passos SR, Xavier GR, Mulato BM, do Carmo Catanho Pereira de Lyra5 M (2014) Characteristics of nodule bacteria from Mimosa spp grown in soils of the Brazilian semiarid region. Afr J Microbiol Res 8(8):788–796

    Article  CAS  Google Scholar 

  • deMenezes A, Clipson N, Doyle E (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14:2577–2588

    Article  CAS  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Dudman W (1971) Antigenic analysis of Rhizobium japonicum by immunodiffusion. Appl Microbiol 21:973–985

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Fiki AA (2006) Genetic diversity in rhizobia determined by random amplified polymorphic DNA analysis. J Agric Soc Sci 2(1):1–4

    Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  PubMed  Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394

    Article  CAS  PubMed  Google Scholar 

  • Gao J-L, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Gibbins AM, Gregory KF (1972) Relatedness among Rhizobium and Agrobacterium species determined by three methods of nucleic acid hybridization. J Bacteriol 111:129–141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giongo A, Ambrosini A, Vargas LK, Freire JRJ, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity of bradyrhizobia strains nodulating soybean [Glycine max (L.) Merrill] isolated from south Brazilian fields. Appl Soil Ecol 38:261–269

    Article  Google Scholar 

  • Graham P (1976) Identification and classification of root nodule bacteria. Symbiotic Nitrogen Fixation Plants 7:99

    Google Scholar 

  • Hassen AI, Bopape FL, Trytsman M (2014) Nodulation study and characterization of rhizobial microsymbionts of forage and pasture legumes in South Africa. World J Agric Res 2(3):93–100

    Article  Google Scholar 

  • Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees: their isolation, identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbial Ecol 101:207–216

    Article  CAS  Google Scholar 

  • Howieson J, Committee GRP (2007) Technical issues relating to agricultural microbial genetic resources (AMiGRs), including their characteristics, utilization, preservation and distribution: draft information paper

    Google Scholar 

  • Hungria M, Loureiro MF, Mendes IC, Campo RJ, Graham PH (2005) Inoculant preparation, production and application. In: Newton WE, Werner W, Newton WE (eds) Nitrogen fixation: origins, applications and research progress, Nitrogen fixation in agriculture, forestry, ecology and the environment, vol IV. Springer, Dordrecht, Amsterdam, pp 223–254

    Google Scholar 

  • Ismail M, El-Zanatay AM, Eissa RA, Hewedy OA (2013) Genetic diversity of Rhizobium leguminosarum as revealed by 16SrRNA gene sequence. Am Eurasian J Agric Environ Sci 13(6):797–801

    Google Scholar 

  • Jensen MA, Webster JA, Straus N (1993) Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl Environ Microbiol 59:945–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang YJ, Cheng J, Mei LJ, Hu J, Piao Z, Yin SX (2010) Multiple copies of 16S rRNA gene affect the restriction patterns and DGGE profile revealed by analysis of genome database. Microbiol 79:655–662

    Article  CAS  Google Scholar 

  • Kapoor KK, Dudeja SS (1995) Ecology of legume root nodule bacteria. In: Mishra PC, Behera N, Senapati BK, Guru BC (eds) Advances in ecology and environmental sciences. Ashish Publishing House, New Delhi, pp 17–33

    Google Scholar 

  • Kesari V, Ramesh AM, Rangan L (2013) Rhizobium pongamiae sp. nov. from root nodules of Pongamia pinnata. Biomed Res Int Article ID:165198, 9 p. doi:10.1155/2013/165198, 2013, 1

  • Khan HR, Mohiuddin M, Rahman M (2008) Enumeration, isolation and identification of nitrogen-fixing bacterial strains at seedling stage in rhizosphere of rice grown in non-calcareous grey flood plain soil of Bangladesh. J Fac Environ Sci Technol Okayama Univ 13:97–101

    CAS  Google Scholar 

  • Khatoon A, Rehman S, Salavati A, Komatsu S (2012) A comparative proteomics analysis in roots of soybean to compatible symbiotic bacteria under flooding stress. Amino Acids 43:2513–2525

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Wegner C-E, Liesack W (2014) Soil metatrascriptomic. In: Nannipieri P, Pietramellara G, Renella G (eds) Omics in soil science. Caister Academic Press, Norfolk, pp 63–93

    Google Scholar 

  • Kondorosi A, Vincze E, Johnston AWB, Beringer JE (1980) A comparison of three Rhizobium linkage maps. Mol Gen Genet 178:403–408

    Article  CAS  Google Scholar 

  • Koontz FP, Faber JE (1961) Somatic antigens of Rhizobium japonicum. Soil Sci 91:228–232

    Article  CAS  Google Scholar 

  • Kucuk C, Kivanc M, Kinaci E (2006) Characterization of Rhizobium sp. isolated from bean. Turk J Biol 30:127–132

    CAS  Google Scholar 

  • L’taief B, Sifi B, Gtari M, Zaman-Allah M, Lachaal M (2007) Phenotypic and molecular characterization of chickpea rhizobia isolated from different areas of Tunisia. Can J Microbiol 53(3):427–434

    Article  PubMed  Google Scholar 

  • Lee JY, Song SH (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52:1231–1242

    Article  CAS  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    Article  CAS  PubMed  Google Scholar 

  • Loureiro M, Kaschuk G, Alberton O, Hungria M (2007) Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian Oxisols under various soil, cropping and inoculum managements. Biol Fertil Soils 43:665–674

    Article  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3:1–7

    Article  CAS  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker P, Raaijmakers J (2011) Deciphering the rhizosphere microbiome. Science 1097:1097–1100

    Article  CAS  Google Scholar 

  • Meneses N, Mendoza-Hernández G, Encarnación S (2010) The extracellular proteome of Rhizobium etli CE3 in exponential and stationary growth phase. Proteome Sci 8:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Messaoud BB, Aboumerieme I, Nassiri L, El-Fahime E, Ibijbijen J (2014) Phenotypic and genotypic characteristics of rhizobia isolated from Meknes-Tafilalet soils and study of their ability to nodulate Bituminaria bituminosa. Br Microbiol Res J 4(4):405–417

    Article  Google Scholar 

  • Mirza MS, Ahmad W, Latif F, Haurat J, Bally R, Normand P, Kauser AM (2001) Isolation, partial characterization and the effect of plant growthpromoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant Soil 237:47–54

    Article  CAS  Google Scholar 

  • Mishra BK, Yadav V, Vishal MK, Kant K (2013) Physiological and molecular characterization of clusterbean [Cyamopsis tetragonaloba (L.) Taub.] rhizobia isolated from different areas of Rajasthan, India. Legume Res 36(4):299–305

    Google Scholar 

  • Moawad H, Abd El-Rahim WM, Abd El-Haleem D (2004) Performance of Phaseolus bean rhizobia in soils from the major production sites in the Nile Delta. C R Biol 327:445–453

    Article  PubMed  Google Scholar 

  • Moschetti G, Peluso AL, Protopapa A, Anastasio M, Pepe O et al (2005) Use of nodulation pattern, stress tolerance, nodC amplification, RAPDPCR and RFLP-16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631

    Article  CAS  PubMed  Google Scholar 

  • Moulin L, Munive A, Dreyfus B, Biovin-Masson C (2001) Nodulation of legumes by members of the bold beta-subclass of Proteobacteria. Nature 411:948–950

    Article  CAS  PubMed  Google Scholar 

  • Mutch LA, Tamimi SM, Young JPW (2003) Genotypic characterization of rhizobia nodulating Vicia faba from soils of Jordan: a comparison with UK isolates. Soil Biol Biochem 35:709–714

    Article  CAS  Google Scholar 

  • Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant-Microbe Interact 13:995–1009

    Article  CAS  PubMed  Google Scholar 

  • Naz I, Bano A, Ul-Hassan T (2009) Morphological, biochemical and molecular characterization of rhizobia from halophytes of Khewra salt range and attock. Pak J Bot 41(6):3159–3168

    CAS  Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83:4327–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization and biological effect of quorum sensing signaling molecules in peanut-nodulating bradyrhizobia. Sensors 12:2851–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogutcu H, Algur OF, Elkoca E, Kantar F (2008) The determination of symbiotic effectiveness of rhizobium strains isolated from wild chickpea collected from high altitudes in Erzurum. Turk J Agric For 32:241–248

    CAS  Google Scholar 

  • Ogutcu H, Adiguzel A, Gulluce M, Karadayi M, Sahin F (2009) Molecular characterization of Rhizobium strains isolated from wild chickpeas collected from high altitudes in Erzurum-Turkey. Rom Biotechnol Lett 14(2):4294–4300

    Google Scholar 

  • Okon Y, Labandera-Gonzalez CA (1994) Agronomic applications of Azospirillum: an evaluation of 20 years worldwide field inoculation. Soil Biol Biochem 26:1591–1601

    Article  CAS  Google Scholar 

  • Oraon V, Singh K (2013) Studies on molecular characterization of rhizobium spp. isolates from agricultural soil of M.P. Int J Adv Agric Sci Technol 1(1):27–34

    Google Scholar 

  • Orel DC, Karagoz A, Durmaz R, Ertunc F (2016) Phenotypic and molecular characterization of Rhizobium vitis strains from vineyards in Turkey. Phytopathol Mediterr 55(1):4–53

    Google Scholar 

  • Ormeno-Orrillo E, Vinuesa P, Zuniga-Davila D, Martinez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from lima bean (Phaseolus lunatus L) in Peru. Syst Appl Microbiol 29:253–262

    Article  CAS  PubMed  Google Scholar 

  • Ozawa T, Ohwaki A, Okumura K (2003) Isolation and characterization of diazotrophic bacteria from the surface-sterilized roots of some legumes. Sci Rep Grad Sch Agric Biol Sci Osaka Pref Univ 55:29–36

    Google Scholar 

  • Paffetti D, Scotti C, Gnocchi S, Fancelli S, Bazzicalupo M (1996) Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Appl Environ Microbiol 62(7):2279–2285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey P, Sahgal M, Maheshwari DK, Johri BN (2004) Genetic diversity of rhizobia isolated from medicinal legumes growing in the sub-Himalayan region of Uttaranchal. Curr Sci 86(1):202–207

    CAS  Google Scholar 

  • Park M, Kim C, Yang J, Lee H, Shin W, Kim S, Sa T (2005) Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiol Res 160:127–133

    Article  CAS  PubMed  Google Scholar 

  • Peng J, Hao B, Liu L, Wang S, Ma B, Yang Y, Xie F, Li Y (2014) RNA-Seq and microarrays analyses reveal global differential transcriptomes of Mesorhizobium huakuii 7653R between bacteroids and free living cells. PLoS One 9(4):e93626. doi:10.1371/journal.pone.0093626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires ACC, Cleary DFR, Almeida A (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microbiol 78:5520–5528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabudoss V, Stella D (2009) Isolation and nitrogen fixing efficiency of a novel diazotroph Gluconacetobacter diazotrophicus associated with different sugar rich crops. Glob J Env Res 3(2):96–98

    CAS  Google Scholar 

  • Prasad MP (2014) Determination of genetic diversity of rhizobium species isolated from root nodules and DNA fingerprinting by RAPD. Int J Adv Biotechnol Res 5(2):101–105

    Google Scholar 

  • Rai R, Dash PK, Mohanpatra T, Singh A (2012) Phenotypic and molecular characterization of indigenous rhizobia nodulating chickpea in India. Ind J Exp Biol 50:340–350

    CAS  Google Scholar 

  • Raposeiras R, Marriel IE, Muzzi MRS, Paiva E, Pereira Filho IA, Carvalhais LC, Sá NMHD (2006) Rhizobium strains competitiveness on bean nodulation in cerrado soils. Pesq Agrop Brasileira 41:439–447

    Article  Google Scholar 

  • Reinhardt EL, Ramos PL, Manfio GP, Barbosa HR, Pavan C, Moreira-Filho CA (2008) Molecular characterization of nitrogen-fixing bacteria isolated from Brazilian agricultural plants at Sao Paulo state. Braz J Microbiol 39:414–422

    Article  PubMed  PubMed Central  Google Scholar 

  • Resendis-Antonio O, Hernández M, Salazar E, Contreras S, Batallar GM, Mora Y et al (2011) Systems biology of bacterial nitrogen fixation: high-throughput technology and its integrative description with constraint-based modeling. BMC Syst Biol 5:120. doi:10.1186/1752-0509-5-120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigby D, Caceres D (2001) Organic farming and the sustainability of agricultural systems. Agric Syst 68:21–40

    Article  Google Scholar 

  • Sadowsky MJ (1983) Physiological, serological, and plasmid characterization of fast-growing Rhizobia that nodulate soybeans. Master’s Thesis, University of Hawaii, Honolulu, p 40

    Google Scholar 

  • Saeki Y, Ozumi S, Yamamoto A, Umehara Y, Hayashi M, Sigua GC (2010) Changes in population occupancy of bradyrhizobia under different temperature regimes. Microbes Environ 25:309–312

    Article  PubMed  Google Scholar 

  • Sajjad M, Malik TA, Arshad M, Zahir ZA, Yusuf F, Rahman SU (2008) PCR studies on genetic diversity of rhizobial strains. Int J Agric Biol 10:505–510

    CAS  Google Scholar 

  • Salavati A, Bushehri AAS, Taleei A, Hiraga S, Komatsu S (2012) A comparative proteomic analysis of the early response to compatible symbiotic bacteria in the roots of a supernodulating soybean variety. J Proteome 75:819–832

    Article  CAS  Google Scholar 

  • Salome JP, Amutha R, Jagannathan P, Josiah JJM, Berchmans S, Yegnaraman V (2009) Electrochemical assay of the nitrate and nitrtite reductase activities of Rhizobium japonicum. Biosens Bioelectron 24:3487–3491

    Article  CAS  PubMed  Google Scholar 

  • Sankhla IS, Meghwal RR, Tak N, Tak A, Gehlot HS (2015) Phenotypic and molecular characterization of microsymbionts associated with Crotalaria medicagenia: a native legume of the Indian Thar desert. Plant Arch 15(2):1003–1010

    Google Scholar 

  • Schmidt PA, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I (2013) Llumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132

    Article  CAS  Google Scholar 

  • Schneider M, De Brujin FJ (1996) Rep-PCR mediated genomic fingerprinting of rhizobia and computer-assisted phylogenetic patterns analysis. World J Microbiol Biotechnol 12:163–174

    Article  CAS  PubMed  Google Scholar 

  • Sessistsch A, Hardarson G, Akkermans ADL, De Vos WM (1997) Characterization of Rhizobium etli and other Rhizobium spp. that nodulate Phaseolus vulgaris L. in an Austrian soil. Mol Ecol 6:601–608

    Article  Google Scholar 

  • Shamseldin AAU, Vinusesa P, Thierfelder H, Werner D (2005) Rhizobium etli and Rhizobium gallicum nodulate Phaseolus vulgaris in Egyptian soils and display cultivar dependent symbiotic efficiency. Symbiosis 38:145–161

    CAS  Google Scholar 

  • Shamseldin A, El-Saadani M, Sadowsky MJ, Sun An C (2009) Rapid identification and discrimination among Egyptian genotypes of Rhizobium leguminosarum bv. viciae and Sinorhizobium meliloti nodulating faba bean (Vicia faba L.) by analysis of nodC, ARDRA, and rDNA sequence analysis. Soil Biol Biochem 41:45–53

    Article  CAS  Google Scholar 

  • Shoukry AA, Khattab AA, Abon-Ellail M, El-shabrawy H (2013) Molecular and biochemical characterization of new Rhizobium leguminosorum bio viciae strains isolated from different located of Egypt. J Appl Sci Res 9(11):5864–5877

    CAS  Google Scholar 

  • Sikora S, Dedzepovic S, Bradic M (2002) Genomic fingerprinting of Bradyrhizobium japonicum isolates by RAPD and rep-PCR. Microbiol Res 157:213–219

    Article  CAS  PubMed  Google Scholar 

  • Silva FV, Simoes-Araujo JL, Silva JP Jr, Xavier GR, Rumjanek NG (2012) Genetic diversity of rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. Braz J Microbiol 43(2):682–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomics analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Singh NK, Luthra U, Desai N (2013) Phenotypic and genotypic characterization of rhizobium species isolated from the root nodules of Sesbania Sesban found in Mumbai and its suburban areas. Ind J Appl Res 3(7):60–67

    Article  Google Scholar 

  • Sørensen J, Haubjerg Nicolaisen M, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology from single-cell to whole-community analysis. Plant Soil 321:483–512

    Article  CAS  Google Scholar 

  • Sun Q, Zybailov B, Majeran W, Friso G, Olinares PD, van Wijk KJ (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    Article  CAS  PubMed  Google Scholar 

  • Suneja P, Piplani S, Dahiya P, Dudeja SS (2016) Molecular characterization of rhizobia from revertants of non-nodulating cultivar and normal cultivar of chickpea. J Agric Sci Technol 18:763–773

    Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tak A, Sankhla IS, Meghwal RR, Tak N, Gehlot HS (2014) Molecular characterization of rhizobia associated with legume Rhyncosia minima native to arid region of Thar desert. Indo Glob J Pharm Sci 4(3):138

    Google Scholar 

  • Teaumroong N, Boonkerd N (1998) Detection of Bradirhizobium spp. and B. japonicum in Thailand by primer-based technology and direct DNA extraction. Plant Soil 204:127–134

    Article  CAS  Google Scholar 

  • Thibivilliers S, Joshi T, Campbell KB, Scheffler B, Xu D, Cooper B et al (2009) Generation of Phaseolus Vulgaris ESTs and investigation of their regulation upon Uromyces appendiculatus infection. BMC Plant Biol 9:46. doi:10.1186/1471-2229-9-46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Toolarood AS, Alikhani HA, Salehi G, Asadi-Rahmani H, Khawazi K, Poorbabaee AA, Lindstrom K (2012) Molecular diversity of rhizobia isolated from root nodules of alfalfa evaluated by analysis of IGS and 16SrRNA. Ann Biol Res 3(5):2058–2063

    Google Scholar 

  • Unno T (2014) Bioinformatic suggestions on MiSeq-based microbial community analysis. J Mol Microbiol Biotechnol 25:765. doi:10.4014/jmb.1409.09057

    Article  CAS  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • van Noorden GE, Kerim T, Goffard N, Wiblin R, Pellerone FI, Rolfe BG et al (2007) Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol 144:1115–1131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • vanPuyvelde S, Cloots L, Engelen K, Das F, Marchal K, Vanderleyden J, Spaepen S (2011) Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response. Microb Ecol 61:723–728

    Article  CAS  Google Scholar 

  • Wagh DS, Shermale RN, Mahure BV (2015) Isolation and characterization of nitrogen fixing bacteria from agricultural rhizosphere. IOSR J Agric Vet Sci 8(6):4

    Google Scholar 

  • Wei GH, Wang ET, Tan ZY, Zhu ME, Chen WX (2002) Rhizobium indigoferae sp. nov. and Sinorhizobium kummerowiae sp. nov. respectively isolated from Indigofera spp. and Kummerowia stipulacea. Int J Syst Evol Microbiol 52:2231–2239

    CAS  PubMed  Google Scholar 

  • Wei GH, Zhang ZX, Chen C, Chen WM, Ju WT (2008) Phenotypic and genetic diversity of rhizobia isolated from nodules of the legume genera Astragalus, Lespedeza and Hedysarum in northwestern China. Microbiol Res 163:651–662

    Article  CAS  PubMed  Google Scholar 

  • Suliasih, Widawati S (2005) Isolation and identification of phosphate solubilizing and nitrogen fixing bacteria from soil in Wamena biological garden, Jayawijaya, Papua. Biodiversitas 6:175–177

    Article  Google Scholar 

  • Wolde-Meskel E, Terefework Z, Lindstrom K, Frostegard A (2004) Metabolic and genomic diversity of rhizobia isolated from field standing native and exotic woody legumes in southern Ethiopia. Syst Appl Microbiol 27:603–611

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wang H, Zhang Z, Lin R, Zhang Z, Lin W (2011) Comparative metaproteomic analysis on consecutively Rehmannia glutinosa monocultured rhizosphere soil. PLoS One 6:1–12

    Google Scholar 

  • Yadav A, Singh AL, Rai GK, Singh M (2013) Assessment of molecular diversity in chickpea (Cicer arietinum L) rhizobia and structural analysis of 16S rDNA sequences from Mesorhizobium ciceri. Pol J Microbiol 62(3):253–262

    CAS  PubMed  Google Scholar 

  • Zhang X, Harper R, Karsisto M, Lindstrom K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Hon’ble Vice-Chancellor, Kurukshetra University, Kurukshetra for proving necessary infrastructure for carrying out research and literature survey. The authors also acknowledge their gratitude to the Director, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra and Chairman, Ambala College of Engineering and Applied Research, Devsthali, Ambala, Haryana for providing infrastructural facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranay Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jain, P., Pundir, R.K. (2017). Recent Trends in Identification and Molecular Characterization of Rhizobia Species. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_8

Download citation

Publish with us

Policies and ethics