Skip to main content

Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

Rhizobia are soil and root nodule bacteria associated symbiotically with legume plants. They are classified into various genera, including Rhizobium (fast growing), Bradyrhizobium (slow growing), Mesorhizobium, and Sinorhizobium. Biological nitrogen fixation by diazotrophic microorganisms is considered to be one of major mechanisms by which plants benefit from the association of its microbial partners. Symbiotic rhizobia usually received carbon fixed by the plant and in turn the plant gets nitrogen fixed by the rhizobia. Thus, the molecular aspect of infection and colonization of plant roots by rhizobia and fixation of nitrogen by bacteroid inside root nodules nowadays receives special attention as plant growth-promoting rhizospheric bacteria. Biotechnological innovations in modern agriculture have increasingly focused on the use of microbial products as alternatives to chemical inoculants, which can lead to green and sustainable agriculture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla MH (1994) Solubilization of rock phosphates by Rhizobium and BradyRhizobium. Folia Microbiol 39:53–56

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2009) Effect of insecticide-tolerant and plant growth promoting MesoRhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J Crop Sci Biotechnol 12:213–222

    Article  Google Scholar 

  • Ahemad M, Khan MS (2010a) Growth promotion and protection of lentil (Lens esculenta) against herbicide stress by Rhizobium species. Ann Microbiol 60:735–745

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011a) Insecticide-tolerant and plant-growth-promoting Rhizobium improves the growth of lentil (Lens esculentus) in insecticide-stressed soils. Pest Manag Sci 67(4):423–429

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011b) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011c) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide-stress. Microbiol J 1:54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2011d) Effect of pesticides on plant growth promoting traits of greengram-symbiont, Bradyrhizobium sp. strain MRM6. Bull Environ Contam Toxicol 86:384–388

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011e) Ecotoxicological assessment of pesticides towards the plant growth promoting activities of Lentil (Lens esculentus)-specific Rhizobium sp. strain MRL3. Ecotoxicology 20:661–669

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86:945–950

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012b) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates J Food Agric 24:334–343

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current prospective. J King Saud Univ Sci 26:1–20

    Article  Google Scholar 

  • Al-Mallah MK, Davey MR, Cocking E (1987) Enzymatic treatment of clover root hairs removes a barrier to Rhizobium-host specificity. Nat Biotechnol 512:1319–1322

    Article  Google Scholar 

  • Aneja P, Dai M, Lacorre DA (2004) Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti RM1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 239:277–283

    Article  CAS  PubMed  Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N et al (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effects on radishes (Rhaphanus sativus L.). Plant Soil 204:57–67

    Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81(6):673–677

    Google Scholar 

  • Athar M, Johnson DA (1996) Nodulation biomass production and nitrogen fixation in alfalfa under drought. J Plant Nutr 19:85–199

    Article  Google Scholar 

  • Bardin SD, Huang HC, Pinto J et al (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296

    Article  Google Scholar 

  • Beauchamp CJ, Dion P, Kloepper JW, Antoun H (1991) Physiological characterization of opine-utilizing rhizobacteria for traits related to plant growth-promoting activity. Plant Soil 132:273–279

    Article  CAS  Google Scholar 

  • Belal EB (2013) Production of polyhydroxybutyric acid (PHB) by Rhizobium elti and Pseudomonas stutzeri. Curr Res J Biol Sci 5(6):273–284

    Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Berraho EL, Lesueur D, Diem HG, Sasson A (1997) Iron requirement and siderophore production in Rhizobium ciceri during growth on an iron-deficient medium. World J Microbiol Biotechnol 13:501–510

    Article  CAS  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Biswas JC, Ladha JK, Dazzo FB (2000) Rhizobial inoculation improves nutrient uptake and growth of lowland rice. Soil Sci Soc Am J 64:1644–1650

    Article  CAS  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Boncompagini EM, Osters M, Poggi M et al (1999) Occurrence of choline and glycine betaine uptake and metabolism in the family Rhizobiaceae and other roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    Google Scholar 

  • Bottomley PJ, Maggard SP (1990) Determination of viability within serotypes of a soil population of Rhizobium leguminosarum bv. trifolii. Appl Environ Microbiol 56:533–540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1991) Osmotically-regulated trehalose accumulation and cyclic beta-1,2-glucan excreted by Rhizobium leguminosarum bv. trifolii TA-1. Arch Microbiol 156:501–506

    CAS  Google Scholar 

  • Brenner JD, Kreig NR, Staley JT (2005) Bergeys manual of systematic bacteriology, vol 2. Springer, New York, pp 324–354

    Book  Google Scholar 

  • Brockwell J (1963) Studies of occurrence of Rhizobium trifolii in the New England region, New South Wales. Fld Sten Rec Div PI Ind CSIRO (Aust) 2:59–70

    Google Scholar 

  • Brockwell J, Pilka A, Holliday RA (1991) Soil pH is a major determinant of the numbers of naturally-occurring Rhizobium meliloti in non-cultivated soils of New South Wales. Aust J Exp Agric 31:211–219

    Article  Google Scholar 

  • Broothaerts W, Mitchell HJ, Weir B et al (2005) Gene transfer to plants by diverse species of bacteria. Nature 433(7026):629–633

    Article  CAS  PubMed  Google Scholar 

  • Callaham DA, Torrey JG (1981) The structural basis for infection of root hairs of Trifolium repens by Rhizobium. Can J Bot 59(9):1647–1664

    Article  Google Scholar 

  • Carson KC, Meyer JM, Dilworth MJ (2000) Hydroxamate siderophore of root nodule bacteria. Soil Biol Biochem 32:11–21

    Article  CAS  Google Scholar 

  • Chakraborty T, Montenegro MA, Sanyal SC et al (1984) Cloning of enterotoxin gene from Aeromonas hydrophila provides conclusive evidence of production of a cytotonic enterotoxin. Infect Immun 46:435–441

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130

    Article  Google Scholar 

  • Chen H, Higgins J, Kondorosi E et al (2000) Identification of nolR-regulated proteins in Sinorhizobium meliloti using proteome analysis. Electrophoresis 21:3823–3832

    Article  CAS  PubMed  Google Scholar 

  • Child JJ (1975) Nitrogen fixation by a Rhizobium sp. in association with non-leguminous plant cell cultures. Nature 253:350–351

    Article  CAS  Google Scholar 

  • Child JJ, Larue TA (1974) A simple technique for the establishment of nitrogenase in soybean callus culture. Plant Physiol 53:88–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain 45. Ps J N. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JE, Wood M, Bjourson AJ (1985) Nodulation of Lotus pedunculatus in acid rooting solution by fast-and slow-growing rhizobia. Soil Biol Biochem 17:487–492

    Article  Google Scholar 

  • Corbett JR (1974) The biochemical mode of action of pesticides. Academic Press, Inc, New York, p 330

    Google Scholar 

  • Cordovilla MP, Ocana A, Ligero F et al (1995) Salinity effects on growth analysis and nutrient composition in four grain legumes-Rhizobium symbiosis. J Plant Nutr 18:1595–1609

    Article  CAS  Google Scholar 

  • Cunningham SD, Munns DN (1984) The correlation of the exopolysaccharide production and acid-tolerance in Rhizobium. Soil Sci Soc Am J 48:1273–1276

    Article  CAS  Google Scholar 

  • Datta B, Chakrabartty PK (2014) Siderophore biosynthesis genes of Rhizobium sp. isolated from Cicer arietinum L. 3 Biotech 4:391–401

    Article  PubMed  Google Scholar 

  • Del Papa MF, Balague LJ, Sowinski SC et al (1999) Isolation and characterization of alfalfa-nodulating rhizobia present in acidic soils of central Argentina and Uruguay. Appl Environ Microbiol 65:1420–1427

    PubMed  PubMed Central  Google Scholar 

  • Deshwal VK, Dubey RC, Maheshwari DK (2003a) Isolation of plant growth promoting strains of (Bradyrhizobium arachis) sp. With biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–444

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC et al (2003b) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164

    CAS  Google Scholar 

  • Devi MK, Banu AR, Gnanaprabhal GR (2007) Purification, characterization of alkaline protease enzyme from native isolate Aspergillus niger and its compatibility with commercial detergents. Indian J Sci Technol 1:7

    Google Scholar 

  • Dey R, Pal KK, Bhatt DM et al (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    Article  CAS  PubMed  Google Scholar 

  • Dixon R, Cannon F, Kondorosi A (1979) Construction of a P-plasmid carrying nitrogen fixation genes from Klebsiella pneuinorziae. Nat Lond 260:268–271

    Article  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149

    Article  CAS  Google Scholar 

  • Doy CH, Gresshoff PM, Rolfe BG (1973) Biological and molecular evidence for the transgenosis of genes from bacteria to plant cells. Proc Natl Acad Sci USA 70(3):723–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BK (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40(2):452–461

    Article  CAS  Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA et al (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Prot 113(6):247–251

    Article  Google Scholar 

  • Esashi Y (1991) Ethylene and seed germination. In: Matto AK, Suttle JC (eds) The plant hormone ethylene. CRC Press, Boca Raton, FL, pp 133–157

    Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR et al (2008) Alleviation of water stress effectsin common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus × Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Foster JW (1993) The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol 175:1981–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster JW (2000) Microbial responses to acid stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress response. ASM Press, Washington, DC, pp 99–115

    Google Scholar 

  • Frankenberger WT, Arshad M (1995) Phytohormones in soil: microbial production and function. Dekker, New York, p 503

    Google Scholar 

  • Frankowski J, Lorito M, Scala F et al (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176(6):421–426

    Article  CAS  PubMed  Google Scholar 

  • Fred EB, Baldwinn IL, McCoy E (2007) Root nodule bacteria and leguminous plants. University of Wisconsin Press, Madison

    Google Scholar 

  • Fujihara S, Yoneyama T (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean rhizobia Rhizobium fredii p220 and Bradyrhizobium japonicum A 1017. Appl Environ Microbiol 59:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL (1970) The effects of amino acids and ammonium on the growth of plant cells in suspension culture. Plant Physiol 45:372–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehring WJ, Goss B, Coles MG, Meyer DE, Donchin E (1993) A neural system for error-detection and compensation. Psychol Sci 4:385–390

    Article  Google Scholar 

  • Georgiev GI, Atkias CA (1993) Effects of salinity on N2 fixation, nitrogen metabolism and export and diffusive conductance of cowpea root nodules. Symbiosis 15:239–255

    Google Scholar 

  • Ghittoni NE, Bueno MA (1996) Changes in the cellular content of trehalose in four peanut rhizobia strains cultured under hypersalinity. Symbiosis 20:117–127

    CAS  Google Scholar 

  • Ghorpade VM, Gupta SG (2016) Siderophore production by Rhizobium nepotum isolated from “stem nodule of Aeschynomene indica”. Int J Adv Res Biol Sci 3:7

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:15 p. Hindawi Publishing Corporation

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R et al (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5(4):355–377

    Article  PubMed  Google Scholar 

  • Gouffi K, Pica N, Pichereau V et al (1999) Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol 65:1491–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Draeger K, Ferrey ML et al (1994) Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40:198–207

    Article  CAS  Google Scholar 

  • Gross DC, Vidaver AK (1978) Bacteriocin-like substances produced by Rhizobium japonicum and other slow-growing rhizobia. Appl Environ Microbiol 36:936–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102

    Google Scholar 

  • Hadi F, Bano A (2010) Effect of diazotrophs (Rhizobium and Azatobactor) on growth of maize (Zea mays L.) and accumulation of lead (PB) in different plant parts. Pak J Bot 42:4363–4370

    Google Scholar 

  • Hadri A, Spaink H, Bisseling T et al (1998) Diversity of root nodulation and rhizobial infection processes. In: Spaink AKHP, Hooykaas PJJ (eds) The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer, Dordrecht

    Google Scholar 

  • Hahn ML, Meyer D, Studer B (1984) Insertion and deletion mutations within the nif region of Rhizobium japonicum. Plant Mol Biol 3:159–168

    Article  CAS  PubMed  Google Scholar 

  • Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330

    Article  CAS  Google Scholar 

  • Hardy RWF, Havelka UD (1975) Nitrogen fixation research: a key to world food. Science 188:633–643

    Article  CAS  PubMed  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK et al (1968) The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:1185–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasky-Gunther K, Hoffmann-Hergarten S, Sikora RA (1998) Resistance against the potato cyst nematode Globodera pallida systemically induced by the rhizobacteria Agrobacterium radiobacter (G12) and Bacillus sphaericus (B43). Fundam Appl Nematol 21:511–515

    Google Scholar 

  • Hayat R, Ali S, Amara U et al (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hirsch PR (1979) Plasmid-determined Bacteriocin production by Rhizobium leguminosarum. J Gen Microbiol 113:219–228

    Article  CAS  Google Scholar 

  • Holsten RD, Bu-Rn-S RC, Hardy RWF et al (1971) Establishment of symbiosis between Rhizobium and plant cells in vitro. Nature 232:173–176

    Article  CAS  PubMed  Google Scholar 

  • Hubbell DH (1981) Legume infection by Rhizobium: a conceptual approach. Bioscience 31:832–837

    Article  Google Scholar 

  • Jamet A, Sigaud S, Van de Sype G et al (2003) Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16:217–225

    Article  CAS  PubMed  Google Scholar 

  • Joseph MV, Desai JD, Desai AJ (1983) Microbiology production of antimicrobial and Bacteriocin-like substances by Rhizobium trifolii. Appl Environ Microbiol 45(2):532–535

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kado CI (1976) The tumor-inducing substance of Agrobacterium tumefaciens. Annu Rev Phytopathol 14:265–308

    Article  CAS  Google Scholar 

  • Karas MA, Turska-Szewczuk A, Trapska D et al (2015) Growth and survival of Mesorhizobium loti inside acanthamoeba enhanced its ability to develop more nodules on Lotus corniculatus. Microb Ecol 70(2):566–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Rees DC (1994) Nitrogenase and biological nitrogen fixation. Biochemistry 332:389–397

    Article  Google Scholar 

  • Kim YC, Jung H, Kim KY et al (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120(4):373–382

    Article  Google Scholar 

  • Klee HJ, Hayfor MB, Kretzmer KA et al (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3:1187–1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Schroth MN (1981) Plant growth promoting rhizobacteria and plant growth under gnotobiotic conditions. Phytopathology 71:642–644

    Article  Google Scholar 

  • Kurchak ON, Provorov NA, Simarov BV (2001) Plasmid pSym1-32 of Rhizobium leguminosarum bv. viceae controlling nitrogen fixation activity, effectiveness of symbiosis, competitiveness and acid tolerance. Russ J Gen 37:1025–1031

    Article  CAS  Google Scholar 

  • Lippincott JA, Lippincott BB (1975) The genus Agrobacterium and plant tumorigenesis. Annu Rev Microbiol 29:377–405

    Article  CAS  PubMed  Google Scholar 

  • Ljunggren H, Fahraeu G (1961) The role of polygalacturonase in root-hair invasion by nodule bacteria. J Gen Microbiol 26:521

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Matiru VN, Dakora FD (2004) Potential use of rhizobial bacteria as promoters of plant growth for increased yield in landraces of African cereal crops. Afr J Biotechnol 3(1):1–7

    Article  CAS  Google Scholar 

  • Mauseth JD (1991) Botany: an introduction to plant biology. Saunders, Philadelphia, pp 348–415

    Google Scholar 

  • Mishra RPN, Singh RK, Jaiswal HK et al (2006) Rhizobium-mediated induction of phenolics and plant growth promotion in rice (Oryza sativa L.). Curr Microbiol 52:383–389

    Google Scholar 

  • Morales VM, Martinez-Molina E, Hubbell DH (1984) Cellulase production by Rhizobium. Plant Soil 80:407–415

    Article  CAS  Google Scholar 

  • Mpepereki S, Makonese F, Wollum AG (1997) Physiological characterization of indigenous rhizobia nodulating Vigna unguiculata in Zimbabwean soils. Symbiosis 22:275–292

    Google Scholar 

  • Naik MM, Dubey SK (2011) Lead-enhanced siderophore production and alteration in cell morphology in a Pb-resistant Pseudomonas aeruginosa. strain 4EA. Curr Microbiol 62:409–414

    Article  CAS  PubMed  Google Scholar 

  • Napoli CA, Hubbell DH (1975) Ultrastructure of Rhizobium-induced infection threads in clover root hairs. Appl Microbiol 30:1003–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natera SHA, Guerreiro N, Djordjevic MA (2000) Proteome analysis of differentially displayed proteins as a tool for the investigation of symbiosis. Mol Plant Microbe Interact 13:995–1009

    Article  CAS  PubMed  Google Scholar 

  • Neubauer U, Furrer G, Kayser A et al (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremediation 2:353–368

    Article  CAS  Google Scholar 

  • Noel TC, Sheng C, Yost CK et al (1996) Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    Article  CAS  PubMed  Google Scholar 

  • Nutman PS (1956) The influence of the legume in root nodule symbiosis. Biol Rev 31:109–151

    Article  Google Scholar 

  • Osdaghi E, Shams-Bakhsh M, Alizadeh A (2009) Induced systemic resistance (ISR) in bean (Phaseolus vulgaris L.) mediated by rhizobacteria against bean rust caused by Uromyces appendiculatus under greenhouse and field conditions. Phytopathol Plant Prot 42(11):1079–1087

    Article  CAS  Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum bv. phaseoli isolates. Turk J Biol 25:435–445

    Google Scholar 

  • Panoff JM, Corroler D, Thammavongs B et al (1997) Differentiation between cold shock proteins and cold acclimation proteins in a mesophilic gram-positive bacterium, Enterococcus faecalis JH2-2. J Bacteriol 179:4451–4454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel U, Sinha S (2011) Rhizobia species: a boon for “plant genetic engineering”. Indian J Microbiol 51(4):521–527

    Article  PubMed  PubMed Central  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Peng GX, Tan ZY, Wang ET et al (2002) Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii. Int J Syst Evol Microbiol 52:457–462

    Article  CAS  PubMed  Google Scholar 

  • Phadtare S, Yamanaka K, Inouye M (2000) The cold shock response. In: Storz G, Hengge-Aronis R (eds) Bacterial stress response. ASM Press, Washington, DC, pp 33–45

    Google Scholar 

  • Philippe R, Dreyfus B, Singh A et al (2012) Indole acetic acid and ACC deaminase-producing Rhizobium leguminosarum bv. trifolii SN10 promote rice growth, and in the process undergo colonization and chemotaxis. Biol Fertil Soils 482:173–182

    Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S et al (2009a) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Reyes AL, Vander-Ent S, Van Wees SCM (2009b) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 55:308–316

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Prasuna P, Ali SS (1987) Detection and characterization of two thermally reactive pectinases in cultures of Rhizobium. Indian J Exp Biol 25:632–633

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV et al (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  PubMed  Google Scholar 

  • Rao VR (1976) Nitrogenase activity in Rhizobium associated with leguminous and nonleguminous tissue cultures. Plant Sci Lett 6:77–83

    Article  CAS  Google Scholar 

  • Rebah F, Prevost D, Tyagi R et al (2009) Poly-β-hydroxybutyrate production by fast-growing rhizobia cultivated in sludge and in industrial wastewater. Appl Biochem Biotechnol 1581:155–163

    Article  CAS  Google Scholar 

  • Reeve WG, Tiwari RP, Wong CM et al (1998) The transcriptional regulator gene phrR in Sinorhizobium meliloti WSM419 is regulated by low pH and other stresses. Microbiology 144:3335–3342

    Article  CAS  PubMed  Google Scholar 

  • Riccillo PM, Muglia CJ, De Bruijn FJ et al (2000) Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182:1748–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE, Simpson RJ (1989) Acid-tolerance and symbiotic effectiveness of Rhizobium trifolii associated with a Trifolium subterraneum L.-based pasture growing in an acid soil. Soil Biol Biochem 21:87–95

    Article  Google Scholar 

  • Robleto EA, Borneman J, Triplett EW (1998) Effects of bacterial antibiotic production on Rhizosphere microbial communities from a culture-independent perspective. Appl Environ Microbiol 64(12):5020–5022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues C, Laranjo M, Oliveira S (2006) Effect of heat and pH stress in the growth of chickpea mesorhizobia. Curr Microbiol 53:1–7

    Article  CAS  PubMed  Google Scholar 

  • Roslycky EB (1967) Bacteriocin production in the rhizobia bacteria. Can J Microbiol 13:431–432

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD (1956) Plant root excretions in relation to the rhizosphere effect. III. The effect of root exudate on the numbers and activity of microorganisms in the soil. Plant Soil 7:209–217

    Article  Google Scholar 

  • Rovira AD (1961) Rhizobium numbers in the rhizospheres of red clover and paspalum in relation to soil treatment and the numbers of bacteria and fungi. Aust J Agric Res 12:77–83

    Article  Google Scholar 

  • Sahlman K, Fahraeus G (1963) An electron microscope study of root hair infection by Rhizobium. J Gen Microbiol 33:425–427

    Article  CAS  PubMed  Google Scholar 

  • Salto H, Watanabe T, Tomloka H (1979) Purification, properties and cytotoxic effect of a bacteriocin from Mycobacterium smegmatis. Antimicrob Agents Chemother 15:504–509

    Article  Google Scholar 

  • Santos R, Herouart D, Puppo A et al (2001) Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38:750–759

    Article  Google Scholar 

  • Sauvage D, Hamelia J, Lacher F (1983) Glycine betaine and other structurally related compounds improve the salt tolerance of Rhizobium meliloti. Plant Sci Lett 31:291–302

    Article  CAS  Google Scholar 

  • Schell J, Van Montagu M, De Picker A et al (1976) Crowngall: bacterial plasmids as oncogenic elements for eukaryotic cells. In: Rubinstein I (ed) Molecular biology of plants. Symposium University of Minnesota, St.-Paul

    Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26

    Article  CAS  Google Scholar 

  • Schurter W, Abderhalden MK, Lelsinger TH (1979) Glaucescin, a bacteriocin-like substance from Streptomyces glaucescens. J Gen Microbiol 113:243–253

    Article  CAS  PubMed  Google Scholar 

  • Schwinghamer EA (1971) Antagonism between strains of Rhizobium trifolii in culture. Soil Biol Biochem 3:355–363

    Article  Google Scholar 

  • Schwinghaner EA, Pankurst CE, Whitfeld PR (1973) Phage-like bacteriocin of Rhizobium trifolii. Can J Microbiol 19:359–368

    Article  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram SP et al (2008) Induction of endophytic colonization in rice (Oryza sativa L.) tissue culture plant by Azorhizobium caulinodans. Biocontrol Lett 30:1477–1487

    CAS  Google Scholar 

  • Sharma SR, Rao NK, Gokhale TS et al (2013) Isolation and characterization of salt tolerant rhizobia native to the desert soils of United Arab Emirates. Emirates J Food Agric 25(2):102

    Article  Google Scholar 

  • Siddiqui ZA, Mahmoud I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHAO and its genetically-modified derivatives. J Phytopathol 151:231–238

    Article  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1998) Effect of rhizobia and fungal antagonists in the control of root infecting fungi on sun flower and chickpea. Pak J Bot 30:279–286

    Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Zaki MJ et al (2000) Effect of urea on the efficacy of Bradyrhizobium sp. and Trichoderma harzianum in the control of root infecting fungi in mungbean and sunflower. Sarhad J Agric 16:403–406

    Google Scholar 

  • Sigaud S, Becquet V, Frendo P et al (1999) Differential regulation of two divergent Sinorhizobium meliloti genes for HPII-like catalases during free-living growth and protective role of both catalases during symbiosis. J Bacteriol 181:2634–2639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PP, Shin YC, Park CS et al (1999) Biological control of Fusarium wilt of cucumber by Chitinolytic bacteria. Phytopathology 89(1):92–99

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kayastha AM, Asthana RK et al (2001) Response of Rhizobium leguminosarum to nickel stress. World J Microbiol Biotechnol 17:667–672

    Article  CAS  Google Scholar 

  • Singh RK, Mishra RPN, Jaiswal HK et al (2006) Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Curr Microbiol 52:345–349

    Article  CAS  PubMed  Google Scholar 

  • Smith LT, Pocard JA, Bernard T et al (1988) Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol 170:3142–3149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith LT, Smith GM, D’souza MR et al (1994) Osmoregulation in Rhizobium meliloti: mechanism and control by other environmental signals. J Exp Zool 268:162–165

    Article  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ (1994) Handbook for Rhizobia. Springer, Berlin

    Book  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3(4)

    Google Scholar 

  • Staehelin C, Xie ZP, Illana A et al (2011) Long-distance transport of signals during symbiosis: are nodule formation and mycorrhization autoregulated in a similar way? Plant Signal Behav 6:372–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stam H, Van Verseveld HW, De Vries W, Stouhamer AH (1986) Utilization of poly-3-hydroxybutyrate in free-living cultures of Rhizobium ORS571. FEMS Microbiol Lett 35:215–220

    CAS  Google Scholar 

  • Storz G, Zheng M (2000) Oxidative stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress response. ASM Press, Washington, DC, pp 47–59

    Google Scholar 

  • Subramanium G, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5(4):355–377

    Google Scholar 

  • Suslow TV, Schroth MN, Isaka M (1980) Application of a rapid method for gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918

    Article  Google Scholar 

  • Tagg JR, Daani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates Sodium chloride stress on tomato plants. J Plant Interact 5:51–58

    Article  CAS  Google Scholar 

  • Thies JE, Woomer PL, Singleton PW (1995) Enrichment of Bradyrhizobium spp. populations in soil due to cropping of the homologous host legume. Soil Biol Biochem 27:633–636

    Article  CAS  Google Scholar 

  • Tiwari RP, Reeve WG, Glenn AG (1992) Mutation conferring acid sensitivity in the acid tolerant strains Rhizobium meliloti WSM419 and Rhizobium leguminosarum biovar viciae WSM 710. FEMS Microbiol Lett 100:107–112

    Article  CAS  Google Scholar 

  • Tiwari RP, Reeve WG, Dilworth MJ et al (1996a) An essential role for actA in acid tolerance of Rhizobium meliloti. Microbiology 142:601–610

    Article  CAS  PubMed  Google Scholar 

  • Tiwari RP, Reeve WG, Dilworth MJ et al (1996b) Acid tolerance in Rhizobium meliloti strain WSM419 involves a two-component sensor-regulator system. Microbiology 142:1693–1704

    Article  CAS  PubMed  Google Scholar 

  • Tu JC (1981) Effect of salinity on Rhizobium-root hair interaction, nodulation and growth of soybean. Can J Plant Sci 61:231–239

    Article  Google Scholar 

  • Van Larebeke N, Genetello C, Hernalsteens JP et al (1977) The transfer of Ti plasmids between Agrobacterium strains by mobilization with the conjugative plasmid Rp4. Mol Gen Genet 152:119–124

    Article  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T et al (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17(8):895–908

    Article  CAS  PubMed  Google Scholar 

  • Villacieros M, Power B, Sanchez-Contreras M et al (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    Article  CAS  Google Scholar 

  • Vlassak KM, Vandurleyden J (1997) Factors influencing nodule occupancy by inoculant rhizobia. Crit Rev Plant Sci 16:163–229

    Article  Google Scholar 

  • Wallington EJ, Lund PA (1994) Rhizobium leguminosarum contains multiple chaperonin (cpn60) genes. Microbiology 140:113–122

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2013) Screening of multimetal and antibiotic resistant isolates and their plant growth promoting activity. Pak J Biol Sci 17:206–212

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by green gram plants. Chemosphere 70:36–45

    Article  CAS  PubMed  Google Scholar 

  • Wani PW, Khan MS, Zaidi A (2007c) Synergistic effects of the inoculation with nitrogen fixing and phosphate solubilizing rhizobacteria on the performance of field grown chickpea. J Plant Nutr Soil Sci 170:283–287

    Article  CAS  Google Scholar 

  • Wani PW, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    Article  CAS  PubMed  Google Scholar 

  • Wani PW, Khan MS (2012) Bioremediaiton of lead by a plant growth promoting Rhizobium species RL9. Bacteriol J 2:66–78

    Article  Google Scholar 

  • Wittenberg JB, Wittenberg BA, Day DA et al (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178:161–169

    Article  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, Corich V et al (1997) Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. Plant Soil 194:99–114

    Article  CAS  Google Scholar 

  • Yanni YG, Rizk RY, El-Fattah FKA et al (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Younis M (2007) Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci 3:111–122

    Google Scholar 

  • Yura T, Kanemori M, Morita MT (2000) The heat shock response: regulation and function. In: Storz G, Hengge-Aronis R (eds) Bacterial stress response. ASM Press, Washington, DC, pp 3–18

    Google Scholar 

  • Zahir ZA, Shah MK, Naveed M et al (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968–989

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati (M.S), India, for providing the research facilities and Ms. Grishma Shinde for the drawing included in chapter.

Conflict of Interest

The author has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Patil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Patil, A., Kale, A., Ajane, G., Sheikh, R., Patil, S. (2017). Plant Growth-Promoting Rhizobium: Mechanisms and Biotechnological Prospective. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_7

Download citation

Publish with us

Policies and ethics