Skip to main content

Exopolysaccharide from Rhizobia: Production and Role in Symbiosis

  • Chapter
  • First Online:
Rhizobium Biology and Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 50))

Abstract

Symbiotic nitrogen fixation (SNF) is the signature feature of legumes in which the microsymbiont collectively called as rhizobia can reduce atmospheric nitrogen (N2) into ammonia; otherwise, N2 is metabolically unavailable to higher plants. The fixed nitrogen is generally used for plant growth or the excess of fixed nitrogen is released into the rhizosphere for improving soil fertility. Hence SNF have a significant impact on sustainable agriculture. The rhizobial diversity is enormous due to their wide geographical distribution, diverse hosts, and niches they occupy all over the globe. Rhizobia are Gram-negative bacteria belonging to class alpha-, beta-, and gamma-proteobacteria, including species of the Rhizobiaceae, Phyllobacteriaceae, Methylobacteriaceae, Brucellaceae, Hyphomicrobiaceae, Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae families. Host specificity exists in the process of SNF. The specificity of rhizobium for a legume host plant is determined by the exchange of molecules between both symbiotic partners. Each step of establishment of symbiosis is tightly controlled through a complex network of signaling cascades. Among them, plants liberate flavonoids into the rhizospheric region that upregulate rhizobial genes responsible for nodule formation. Rhizobia produce a variety of extracellular polymeric substances (EPSs), from simple glycans to complex heteropolymers. The secretion of EPS by rhizobia is associated with the invasion process and bacteroid and nodule development, as well as being a response to environmental stresses. There are different types of surface polysaccharides such as lipopolysaccharides, capsular polysaccharides, and neutral and acidic polysaccharides found in rhizobia. The production of symbiotically active polysaccharides may also provide stress adaptability to rhizobial strains against changing environmental conditions. This chapter focuses on different kinds of polysaccharides produced by rhizobia, their genetics and biosynthesis, as well as their biological role on effective symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ausmees N, Jonsson H, Höglund S, Ljunggren H, Lindberg M (1999) Structural and putative regulatory genes involved in cellulose synthesis in Rhizobium leguminosarum bv. trifolii. Microbiology 145:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Battisti L, Lara JC, Leigh JA (1992) Specific oligosaccharide form of the Rhizobium meliloti exopolysaccharide promotes nodule invasion in alfalfa. Proc Natl Acad Sci USA 89:5625–5629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bec-Ferte MP, Krishnan HB, Savagnac A, Pueppke SG, Promé J-C (1996) Rhizobium fredii synthesizes an array of lipooligosaccharides, including a novel compound with glucose inserted into the backbone of the molecule. FEBS Lett 393:273–279

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Pühler A (1998a) Specific amino acid substitutions in the proline-rich motif of the Rhizobium meliloti ExoP protein result in enhanced production of low-molecular-weight succinoglycan at the expense of high-molecular-weight succinoglycan. J Bacteriol 180(2):395–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker A, Pühler A (1998b) Production of exopolysaccharides. Kluwer Academic Publishers, Oegstgeest, pp 97–118

    Google Scholar 

  • Becker A, Kleickmann A, Keller M, Arnold W, Pühler A (1993a) Identification and analysis of the Rhizobium meliloti exoAMONP genes involved in exopolysaccharide biosynthesis and mapping of promoters located on the exoHKLAMONP fragment. Mol Gen Genet 241:367–379

    CAS  PubMed  Google Scholar 

  • Becker A, Kleickmann A, Kuster H, Keller M, Arnold W, Pühler A (1993b) Analysis of the Rhizobium meliloti genes exoU, exoV, exoW, exoT, and exoI involved in exopolysaccharide biosynthesis and nodule invasion: exoU and exoW probably encode glucosyltransferases. Mol Plant Microbe Interact 6:735–744

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Rüberg S, Kuster H, Roxlau AA, Keller M, Ivashina T, Cheng HP, Walker GC, Pühler A (1997) The 32-kilobase exp gene cluster of Rhizobium meliloti directing the biosynthesis of galactoglucan: genetic organization and properties of the encoded gene products. J Bacteriol 179:1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berck S, Perret X, Quesada-Vincens D, Promé J-C, Broughton WJ, Jabbouri S (1999) NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. J Bacteriol 181:957–964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhagwat AA, Mithofer A, Pfeffer PE, Kraus C, Spickers N et al (1999) Further studies of the role of cyclic β-glucans in symbiosis: an NdvC mutant of Bradyrhizobium japonicum synthesizes cyclodecakis-(1→3)-β-glucosyl. Plant Physiol 119:1057–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat UR, Carlson RW, Busch M, Mayer H (1991a) Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the α-2 subgroup of Proteobacteria. Int J Syst Bacteriol 41:213–217

    Article  CAS  PubMed  Google Scholar 

  • Bhat UR, Mayer H, Yokota A, Hollingworth RI, Carlson RW (1991b) Occurrence of lipid A variants with 27-hydroxy-octacosanoic acid in lipoloysaccharides from members of the family of Rhizobiaceae. J Bacteriol 173:2155–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld MW, Miller KJ (1998) Cell-surface β-glucans. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 81–96

    Chapter  Google Scholar 

  • Breedveld MW, Cremers HC, Batley M, Posthumus MA, Zevenhuizen LP, Wijffelman CA, Zehnder AJ (1993) Polysaccharide synthesis in relation to nodulation behavior of Rhizobium leguminosarum. J Bacteriol 175:750–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell GRO, Reuhs BL, Walker GC (1998) Different phenotypic classes of Sinorhizobium meliloti mutants defective in synthesis of K antigen. J Bacteriol 180:5432–5436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canter Cremers HCJ, Batley M, Redmond JW, Eydems L, Breedveld MW, Zevenhuizen LPTM, Pees E, Wijffelman CA, Lugtenberg BJJ (1990) Rhizobium leguminosarum exoB mutants are deficient in the synthesis of UDP-glucose 4′-epimerase. J Biol Chem 265:21122–21127

    CAS  PubMed  Google Scholar 

  • Castellane TCL, Otaboni AMMB, Lemos GM (2015) Characterization of exopolysaccharides produced by rhizobia species. Rev Bras Ciênc Solo 39:1566–1575

    Article  Google Scholar 

  • Charles TC, Finan TM (1991) Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 127:5–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciesla J, Kopycinska M, Lukowska M, Bieganowski A, Janczarek M (2016) Surface properties of wild type Rhizobium leguminosarum bv. trifolii strain 24.2 and its derivatives with different extracellular polysaccharide content. PLoS One 11(10):e0165080. doi:10.1371/journal.pone.0165080

    Article  PubMed  PubMed Central  Google Scholar 

  • Corvera A, Promé D, Promé J-C, Martinez-Romero E, Romero D (1999) The no1L gene from Rhizobium etli determines nodulation efficiency by mediating the acetylation of the fucosyl residue in the nodulation factor. Mol Plant Microbe Interact 12:236–246

    Article  CAS  PubMed  Google Scholar 

  • D'Haeze W, Holsters M (2004) Surface polysaccharides enable bacteria to evade plant immunity. Trends Microbiol 12:555–561

    Article  PubMed  Google Scholar 

  • Djordjevic SP, Chen H, Batley M, Redmond JW, Rolfe BG (1987) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by addition of homologous exopolysaccharides. J Bacteriol 169:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962

    Article  CAS  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorholter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A (2001) The complete sequence of the 1, 683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firmin JL, Wilson KE, Carlson RW, Davies AE, Downie JA (1993) Resistance to nodulation of cv Afghanistan peas is overcome by nodX which mediates an O-acetylation of the Rhizobium leguminosarum lipooligosaccharide nodulation factor. Mol Microbiol 10:351–360

    Article  CAS  PubMed  Google Scholar 

  • Forsberg LS, Carlson RW (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359. The complete structure of the core region of R. etli lipopolysaccharides. J Biol Chem 273:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206

    Article  CAS  PubMed  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993a) Family of glycosyl transferases needed for the synthesis of succinoglycan by Rhizobium meliloti. J Bacteriol 175:7033–7044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glucksmann MA, Reuber TL, Walker GC (1993b) Genes needed for the modification, polymerization, export, and processing of succinoglycan by Rhizobium meliloti: a model for succinoglycan biosynthesis. J Bacteriol 175:7045–7055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JE, Reuhs B, Walker GC (1996) Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proc Natl Acad Sci USA 93:8636–8641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez JE, Semino CE, Wang LX, Castellano-Torres LE, Walker GC (1998) Biosynthetic control of molecular weight in the polymerization of the octasaccharide subunits of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Proc Natl Acad Sci USA 95:13477–13482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gore RS, Miller KJ (1993) Cyclic β-1,6-1,3 glucans are synthesized by Bradyrhizobium japonicum bacteroids within soybean (Glycine max) root nodules. Plant Physiol 102:191–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guentas L, Pheulpin P, Michaud P, Heyraud A, Gey C, Courtois B, Courtois J (2001) Structure of a polysaccharide from a Rhizobium species containing 2-deoxy-β-D-arabino-hexuronic acid. Carbohydr Res 332(2):167–173

    Article  CAS  PubMed  Google Scholar 

  • Hadri A-E, Spaink HP, Bisseling T, Brewin NJ (1998) Diversity of root nodulation and rhizobial infection processes. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 347–360

    Chapter  Google Scholar 

  • Hanin M, Jabbouri S, Quesada VD, Freiberg C, Perret X et al (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host specificity gene. Mol Microbiol 24:1119–1129

    Article  CAS  PubMed  Google Scholar 

  • Her GR, Glazebrook J, Walker GC, Reinhold VN (1990) Structural studies of a novel exopolysaccharide produced by a mutant of Rhizobium meliloti strain Rm 1021. Carbohydr Res 198:305–312

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth RI, Carlson RW (1989) 2,7-hydroxyoctacosanoic acid is a major structural fatty acyl component of the lipopolysaccharide of Rhizobium trifolii ANU 843. J Biol Chem 264:9300–9303

    CAS  PubMed  Google Scholar 

  • Ivashina TN, Ksenzenko VN (2012) Exopolysaccharide biosynthesis in Rhizobium leguminosarum from genes to functions. In: Karunaratne DN (ed) The complex world of polysaccharides. InTech, Rijeka, pp 99–127

    Google Scholar 

  • Janczarek M, Skorupska A (2011) Modulation of rosR expression and exopolysaccharide production in Rhizobium leguminosarum bv. trifolii by phosphate and clover root exudates. Int J Mol Sci 12:4132–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Kamila R, Anna M, Jarosław G, Marta PS (2014) Signal molecules and cell-surface components involved in early stages of the legume–Rhizobium interactions. Appl Soil Ecol 85:94–113

    Article  Google Scholar 

  • Janczarek M, Rachwał K, Cieśla J, Ginalska G, Bieganowski A (2015) Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant Soil 388:211–227

    Article  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    Article  CAS  PubMed  Google Scholar 

  • Kannenberg EL, Reuhs BL, Forsberg LS, Carlson RW (1998) Lipopolysaccharides and K-antigens: their structures, biosynthesis, and functions. In: The Rhizobiaceae: molecular biology of model plant-associated bacteria. Kluwer Academic Publishers, Dordrecht, pp 120–154

    Google Scholar 

  • Kereszt A, Kiss E, Rheus BL, Carlson RW, Kondorosi A, Putnoky P (1998) Novel rkp gene clusters of Sinorhizobium meliloti involved in capsular polysaccharide production and invasion of the symbiotic nodule: the rkpK gene encodes a UDP-glucose dehydrogenase. J Bacteriol 180:5426–5431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koo H, Falsetta ML, Klein MI (2013) The exopolysaccharide matrix: a virulence determinant of cariogenic biofilm. J Dent Res 92:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Król J, Wielbo J, Mazur A, Kopciñska J, £otocka B, Golinowski W, Skorupska A (1998) Molecular characterization of pss-CDE genes of Rhizobium leguminosarum bv. trifolii strain TA1: pssD mutant is affected in exopolysaccharide synthesis and endocytosis of bacteria. Mol Plant Microbe Interact 11:1142–1148

    Article  PubMed  Google Scholar 

  • Król J, Mazur A, Marczak M, Skorupska A (2005) Mapping of the Rhizobium leguminosarum bv. trifolii TA1 genome. In: Kuusiene S (ed) Abstract book of the first baltic region symposium and postgraduate course: agro-biotechnology focused on root-microbe systems: 20–27 May 2005; Kounas, Lithuania. Kaunas, pp 33–34

    Google Scholar 

  • Laus MC, Logman TJ, Van Brussel AA, Carlson RW, Azadi P, Gao MY, Kijne JW (2004) Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol 186:6617–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laus MC, van Brussel AAN, Kijne JW (2005) Exopolysaccharide structure is not a determinant of host specificity in nodulation of Vicia sativa roots. Mol Plant Microbe Interact 18:1123–1129

    Article  CAS  PubMed  Google Scholar 

  • Lerouge P, Roche P, Faucher C, Maillet F, Truchet G et al (1990) Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  CAS  PubMed  Google Scholar 

  • López-Lara IM, Blok-Tip L, Quinto C, Garcia ML, Stacey G et al (1996) NodZ of Bradyrhizobium extends the nodulation host range of Rhizobium by adding a fucosyl residue to nodulation signals. Mol Microbiol 21:397–408

    Article  PubMed  Google Scholar 

  • Mazur A, Krol JE, Skorupska A (2001) Isolation and sequencing of Rhizobium leguminosarum bv. trifolii pssN, pssO and pssP genes encoding the proteins involved in polymerization and translocation of exopolysaccharide. DNA Seq 12:1–12

    Article  CAS  PubMed  Google Scholar 

  • Mazur A, Król J, Marczak M, Skorupska A (2003) Membrane topology of PssT, the transmembrane protein component of the type I exopolysaccharide transport system in Rhizobium leguminosarum bv. trifolii strain TA1. J Bacteriol 185:2503–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira LM, Becker JD, Pühler A, Becker A (2000) The Sinorhizobium meliloti ExpE1 protein secreted by a type I secretion system involving ExpD1 and ExpD2 is required for biosynthesis or secretion of the exopolysaccharide galactoglucan. Microbiology 146:2237–2248

    Article  CAS  PubMed  Google Scholar 

  • Morris VJ, Brownsey GJ, Chilvers GR, Harris JE, Gunning AP, Stevens BJH (1991) Possible biological roles for Rhizobium leguminosarum extracellular polysaccharide and cyclic glucans in bacteria-plant interactions for nitrogen fixing bacteria. Food Hydrocoll 5:185–188

    Article  CAS  Google Scholar 

  • Müller P, Keller M, Weng WM, Quandt J, Arnold W, Pühler A (1993) Genetic analysis of the Rhizobium meliloti exoYFQ operon: ExoY is homologous to sugar transferases and ExoQ represents a transmembrane protein. Mol Plant Microbe Interact 6:55–65

    Article  PubMed  Google Scholar 

  • Niehaus K, Baier R, Becker A, Pühler A (1996) Symbiotic suppression of the Medicago sativa defense system—the key of Rhizobium meliloti to enter the host plant? In: Stacey G, Mullin B, Gresshoff PM (eds) Biology of plant-microbe interactions. ISMPI, St. Paul, pp 349–352

    Google Scholar 

  • Niemeyer D, Becker A (2001) The molecular weight distribution of succinoglycan produced by Sinorhizobium meliloti is influenced by specific tyrosine phosphorylation and ATPase activity of the cytoplasmic domain of the ExoP protein. J Bacteriol 183:5163–5170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsthoorn MMA, López-Lara IM, Petersen BO, Bock K, Haverkamp J et al (1998) Novel branched Nod factor structure results from α-(1→3) fucosyl transferase activity: the major lipo-chitin oligosaccharides from Mesorhizobium loti strain NZP2213 bear an α-(1→3) fucosyl substituent on a nonterminal backbone residue. Biochemistry 37:9024–9032

    Article  CAS  PubMed  Google Scholar 

  • Ovtsyna AO, Geurts R, Bisseling T, Lugtenberg BJJ, Tikhonovich IA, Spaink HP (1998) Restriction of host range by the sym2 allele of Afghan pea is non-specific for the type of modification at the reducing terminus of nodulation signals. Mol Plant Microbe Interact 11:418–422

    Article  CAS  Google Scholar 

  • Pacios Bras C, Alberich Jordà M, Wijfjes AHM, Harteveld M, Stuurman N et al (2000) A Lotus japonicus nodulation system based on heterologous expression of the fucosyl transferase NodZ and the acetyl transferase NolL in Rhizobium leguminosarum. Mol Plant Microbe Interact 13:475–479

    Article  CAS  PubMed  Google Scholar 

  • Parniske M, Schmidt PE, Kosch K, Müller P (1994) Plant defense response of host plants with determinate nodules induced by EPS defective exoB mutants of Bradyrhizobium japonicum. Mol Plant Microbe Interact 7:631–638

    Article  CAS  Google Scholar 

  • Paulsen IT, Beness AM, Saier MH Jr (1997) Computer-based analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria. Microbiology 143:2685–2699

    Article  CAS  PubMed  Google Scholar 

  • Pellock BJ, Cheng HP, Walker GC (2000) Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 182:4310–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perotto S, Brewin NJ, Kannenberg EL (1994) Cytological evidence for a host defense response that reduces cell and tissue invasion in pea nodules by lipopolysaccharide-defective mutants of Rhizobium leguminosarum strain 3841. Mol Plant Microbe Interact 7:99–112

    Article  CAS  Google Scholar 

  • Pollock TJ, van Workum WAT, Thorne L, Mikolajczak MJ, Yamazaki M, Kijne JW, Armentrout RW (1998) Assignment of biochemical functions to glycosyl transferase genes which are essential for biosynthesis of exopolysaccharides in Sphingomonas strain S88 and Rhizobium leguminosarum. J Bacteriol 180:586–593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318

    Article  CAS  PubMed  Google Scholar 

  • Reuber TL, Walker GC (1993a) Biosynthesis of succinoglycan, a symbiotically important exopolysaccharide of Rhizobium meliloti. Cell 74:269–280

    Article  CAS  PubMed  Google Scholar 

  • Reuber TL, Walker GC (1993b) The acetyl substituent of succinoglycan is not necessary for alfalfa nodule invasion by Rhizobium meliloti Rm1021. J Bacteriol 175:3653–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolfe BG, Carlson RW, Ridge RW, Dazzo RW, Mateos FB, Pankhurst CE (1996) Defective infection and nodulation of clovers by exopolysaccharide mutants of Rhizobium leguminosarum bv. trifolii. Aust J Plant Physiol 23:285–303

    Article  CAS  Google Scholar 

  • Rolin DB, Pfeffer PE, Osman SF, Szwergold BS, Kappler F, Benesi AJ (1992) Structural studies of a phosphocholine substituted β-(1, 3); (1, 6) macrocyclic glucan from Bradyrhizobium japonicum USDA 110. Biochim Biophys Acta 1116:215–225

    Article  CAS  PubMed  Google Scholar 

  • Sadykov MR, Ivashina TV, Kanapin AA, Shliapnikov MG, Ksenzenko VN (1998) Structure-functional organization of exopolysaccharide biosynthetic genes in Rhizobium leguminosarum bv. viciae VF39. Mol Biol 32:797–804

    CAS  Google Scholar 

  • Schlaman HRM, Gisel AA, Quaedvlieg NEM, Bloemberg GV, Lugtenberg BJJ et al (1997) Chitin oligosaccharides can induce cortical cell division in roots of Vicia sativa when delivered by ballistic microtargeting. Development 124:4887–4893

    CAS  PubMed  Google Scholar 

  • Schmidt PE, Parniske M, Werner D (1992) Production of the phytoalexins glyceollin I by soybean roots in response to symbiotic and pathogenic infection. Bot Acta 105:18–25

    Article  CAS  Google Scholar 

  • Schoonejans E, Expert D, Toussaint A (1987) Characterization and virulence properties of Erwinia chrysanthemi lipopolysaccharide-defective, phi EC2-resistant mutants. J Bacteriol 169:4011–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silvi S, Barghini P, Aquilanti A, Juarez-Jimenez B, Fenice M (2013) Physiologic and metabolic characterization of a new marine isolate (BM39) of Pantoea sp. producing high levels of exopolysaccharide. Microb Cell Fact 12:10–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 5:1–19

    Article  Google Scholar 

  • Staehelin C, Forsberg LS, D'Haeze W, Gao MY, Carlson RW, Xie ZP, Pellock BJ, Jones KM, Walker GC, Streit WR, Broughton WJ (2006) Exo-oligosaccharides of Rhizobium sp. strain NGR234 are required for symbiosis with various legumes. J Bacteriol 188:6168–6178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol 126:133–144

    Article  PubMed  PubMed Central  Google Scholar 

  • van Spronsen PC, Bakhuizen R, van Brussel AAN, Kijne JW (1994) Cell wall degradation during infection thread formation by the root nodule bacterium Rhizobium leguminosarum is a two-step process. Eur J Cell Biol 64:88–94

    PubMed  Google Scholar 

  • van Workum WAT, Canter Cremers HCJ, Wijfies AHM, van der Kolk C, Wijffelman CA, Kijne JW (1997) Cloning and characterization of four genes of Rhizobium leguminosarum bv. trifolii involved in exopolysaccharide production and nodulation. Mol Plant Microbe Interact 10:290–301

    Article  PubMed  Google Scholar 

  • van Workum WAT, van Slageren S, van Brussel AAN, Kijne JW (1998) Role of exopolysaccharides of Rhizobium leguminosarum bv. viciae as host plant-specific molecules required for infection thread formation during nodulation of Vicia sativa. Mol Plant Microbe Interact 11:1233–1241

    Article  Google Scholar 

  • Wang L-X, Wang Y, Pellock BJ, Walker GC (1999) Structural characterization of the symbiotically important low-molecular-weight succinoglycan of Sinorhizobium meliloti. J Bacteriol 181:6788–6796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield C, Paiment A (2003) Biosynthesis and assembly of Group 1 capsular polysaccharides in Escherichia coli and related extracellular polysaccharides in other bacteria. Carbohydr Res 338:2491–2502

    Article  CAS  PubMed  Google Scholar 

  • York GM, Walker GC (1997) The Rhizobium meliloti exoK gene and prsD/prsE/exsH genes are components of independent degradative pathways which contribute to production of low molecular-weight succinoglycan. Mol Microbiol 25:117–134

    Article  CAS  PubMed  Google Scholar 

  • Zevenhuizen LPTM (1997) Succinoglycan and galactoglucan. Carbohydr Polym 33:139–144

    Article  CAS  Google Scholar 

  • Zorreguieta A, Ugalde R (1986) Formation in Rhizobium and Agrobacterium spp. of a 235 kilodalton protein intermediate in β-D(1–2) glucan synthesis. J Bacteriol 167:947–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Annapurna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Senthil Kumar, M., SwarnaLakshmi, K., Annapurna, K. (2017). Exopolysaccharide from Rhizobia: Production and Role in Symbiosis. In: Hansen, A., Choudhary, D., Agrawal, P., Varma, A. (eds) Rhizobium Biology and Biotechnology. Soil Biology, vol 50. Springer, Cham. https://doi.org/10.1007/978-3-319-64982-5_13

Download citation

Publish with us

Policies and ethics