Skip to main content

Relative Pose Estimation from Straight Lines Using Optical Flow-Based Line Matching and Parallel Line Clustering

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 693))

Abstract

This paper tackles the problem of relative pose estimation between two monocular camera images in textureless scenes. Due to a lack of point matches, point-based approaches such as the 5-point algorithm often fail when used in these scenarios. Therefore we investigate relative pose estimation from line observations. We propose a new algorithm in which the relative pose estimation from lines is extended by a 3D line direction estimation step. Using the estimated line directions, the robustness and computational efficiency of the relative pose calculation is greatly improved. Furthermore, we investigate line matching techniques as the quality of the matches influences directly the outcome of the relative pose estimation. We develop a novel line matching strategy for small baseline matching based on optical flow which outperforms current state-of-the-art descriptor-based line matchers. First, we describe in detail the proposed line matching approach. Second, we introduce our relative pose estimation based on 3D line directions. We evaluate the different algorithms on synthetic and real sequences and demonstrate that in the targeted scenarios we outperform the state-of-the-art in both accuracy and computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A scene complies with the “Manhattan world” assumption if it has three dominant line directions which are orthogonal and w.l.o.g. can be assumed to coincide with the x-, y- and z-axis of the world coordinate system.

  2. 2.

    We thank the authors for providing us with their implementation.

  3. 3.

    We use the implementation from https://github.com/bverhagen/SMSLD/tree/master/MSLD/MSLD/MSLD.

  4. 4.

    We use the implementation of OpenCV 3.0.0.

  5. 5.

    http://www.robots.ox.ac.uk/~vgg/data1.html.

  6. 6.

    We use the implementation in OpenCV 3.0.0 with default parameters.

  7. 7.

    http://www.robots.ox.ac.uk/~vgg/data1.html.

References

  1. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  3. Nister, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–770 (2004)

    Article  Google Scholar 

  4. von Schmude, N., Lothe, P., Jähne, B.: Relative pose estimation from straight lines using parallel line clustering and its application to monocular visual odometry. In: International Conference on Computer Vision Theory and Applications, pp. 421–431 (2016)

    Google Scholar 

  5. Hartley, R.I.: Projective reconstruction from line correspondences. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 903–907 (1994)

    Google Scholar 

  6. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN 0521540518

    Book  MATH  Google Scholar 

  7. Weng, J., Huang, T., Ahuja, N.: Motion and structure from line correspondences; closed-form solution, uniqueness, and optimization. IEEE Trans. Pattern Anal. Mach. Intell. 14, 318–336 (1992)

    Article  Google Scholar 

  8. Elqursh, A., Elgammal, A.: Line-based relative pose estimation. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3049–3056 (2011)

    Google Scholar 

  9. Wang, G., Wu, J., Ji, Z.: Single view based pose estimation from circle or parallel lines. Pattern Recogn. Lett. 29, 977–985 (2008)

    Article  Google Scholar 

  10. Bazin, J., Demonceaux, C., Vasseur, P., Kweon, I.: Motion estimation by decoupling rotation and translation in catadioptric vision. Comput. Vis. Image Underst. 114, 254–273 (2010)

    Article  Google Scholar 

  11. Wang, Z., Wu, F., Hu, Z.: MSLD: a robust descriptor for line matching. Pattern Recogn. 42, 941–953 (2009)

    Article  Google Scholar 

  12. Hirose, K., Saito, H.: Fast line description for line-based slam. In Bowden, R., Collomosse, J., Mikolajczyk, K. (eds.) 2012 British Machine Vision Conference, pp. 83.1–83.11 (2012)

    Google Scholar 

  13. Zhang, L., Koch, R.: Line matching using appearance similarities and geometric constraints. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 236–245. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32717-9_24

    Chapter  Google Scholar 

  14. Zhang, L., Koch, R.: An efficient and robust line segment matching approach based on LBD descriptor and pairwise geometric consistency. J. Vis. Commun. Image Represent. 24, 794–805 (2013)

    Article  Google Scholar 

  15. Deriche, R., Faugeras, O.: Tracking line segments. In: Faugeras, O. (ed.) ECCV 1990. LNCS, vol. 427, pp. 259–268. Springer, Heidelberg (1990). doi:10.1007/BFb0014872

    Chapter  Google Scholar 

  16. Chiba, N., Kanade, T.: A tracker for broken and closely-spaced lines. In. ISPRS International Society for Photogrammetry and Remote Sensing Conference, Hakodate, Japan, pp. 676–683 (1998)

    Google Scholar 

  17. Bartoli, A., Sturm, P.: Structure-from-motion using lines: representation, triangulation, and bundle adjustment. Comput. Vis. Image Underst. 100, 416–441 (2005)

    Article  Google Scholar 

  18. Schindler, G., Krishnamurthy, P., Dellaert, F.: Line-based structure from motion for urban environments. In: Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2006), pp. 846–853 (2006)

    Google Scholar 

  19. Zhou, H., Zou, D., Pei, L., Ying, R., Liu, P., Yu, W.: Structslam: visual slam with building structure lines. IEEE Trans. Veh. Technol. 1 (2015)

    Google Scholar 

  20. Witt, J., Weltin, U.: Robust stereo visual odometry using iterative closest multiple lines. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013), pp. 4164–4171 (2013)

    Google Scholar 

  21. Holzmann, T., Fraundorfer, F., Bischof, H.: Direct stereo visual odometry based on lines. In: International Conference on Computer Vision Theory and Applications, pp. 474–485 (2016)

    Google Scholar 

  22. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. IJCAI 81, 674–679 (1981)

    Google Scholar 

  23. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)

    Google Scholar 

  24. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems, vol. 3. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  25. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376–380 (1991)

    Article  Google Scholar 

  26. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 1–38 (1977)

    Google Scholar 

  27. Antone, M.E., Teller, S.: Automatic recovery of relative camera rotations for urban scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000, pp. 282–289 (2000)

    Google Scholar 

  28. Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 476–490. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1_32

    Chapter  Google Scholar 

  29. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D slam systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012), pp. 573–580 (2012)

    Google Scholar 

  30. Kondermann, D., et al.: Stereo ground truth with error bars. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 595–610. Springer, Cham (2015). doi:10.1007/978-3-319-16814-2_39

    Google Scholar 

  31. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3361 (2012)

    Google Scholar 

  32. von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32, 722–732 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naja von Schmude .

Editor information

Editors and Affiliations

A Matching Test Set

A Matching Test Set

The test set consists of 8 image pairs with small baseline displacement showing different indoor and outdoor scenes. For each image in the test set, we detect line-segments using the LSD algorithmFootnote 6 [32]. Then, we manually label corresponding lines in the image pairs and save them as ground truth matches. Note that a line-segment can correspond to multiple line-segments in the other image as the line segmentation may vary.

The complete test set is shown in Fig. 14. The image pairs “Facade01” and “Facade02” are taken from the matching evaluation from Zhang et al. [13, 14], “HeiSt02” from the Heidelberger Stereo benchmark [30], “Kitti02” from the KITTI odometry benchmark [31] and“Oxford02” from the Oxford multiview datasetFootnote 7.

Fig. 14.
figure 14

Image pairs of the test set.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

von Schmude, N., Lothe, P., Witt, J., Jähne, B. (2017). Relative Pose Estimation from Straight Lines Using Optical Flow-Based Line Matching and Parallel Line Clustering. In: Braz, J., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2016. Communications in Computer and Information Science, vol 693. Springer, Cham. https://doi.org/10.1007/978-3-319-64870-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64870-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64869-9

  • Online ISBN: 978-3-319-64870-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics