Skip to main content

Solution of Linear Systems

  • Chapter
  • First Online:
Matrix Algebra

Part of the book series: Springer Texts in Statistics ((STS))

  • 8815 Accesses

Abstract

One of the most common problems in numerical computing is to solve the linear system

$$\displaystyle{Ax = b;}$$

that is, for given A and b, to find x such that the equation holds. The system is said to be consistent if there exists such an x, and in that case a solution x may be written as A b, where A is some inverse of A. If A is square and of full rank, we can write the solution as A −1 b.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ammann, Larry, and John Van Ness. 1988. A routine for converting regression algorithms into corresponding orthogonal regression algorithms. ACM Transactions on Mathematical Software 14:76–87.

    Article  MathSciNet  MATH  Google Scholar 

  • Benzi, Michele. 2002. Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182:418–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, Peter N., and Homer F. Walker. 1997. GMRES on (nearly) singular systems. SIAM Journal of Matrix Analysis and Applications 18: 37–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Bunch, James R., and Linda Kaufman. 1977. Some stable methods for calculating inertia and solving symmetric linear systems. Mathematics of Computation 31:163–179.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaitin-Chatelin, Françoise, and Valérie Frayssé. 1996. Lectures on Finite Precision Computations. Philadelphia: Society for Industrial and Applied Mathematics.

    Book  MATH  Google Scholar 

  • Gentleman, W. M. 1974. Algorithm AS 75: Basic procedures for large, sparse or weighted linear least squares problems. Applied Statistics 23:448–454.

    Article  Google Scholar 

  • Golub, G. H., and C. F. Van Loan. 1980. An analysis of the total least squares problem. SIAM Journal of Numerical Analysis 17:883–893.

    Article  MathSciNet  MATH  Google Scholar 

  • Golub, Gene H., and Charles F. Van Loan. 1996. Matrix Computations, 3rd ed. Baltimore: The Johns Hopkins Press.

    MATH  Google Scholar 

  • Greenbaum, Anne, and Zdeněk Strakoš. 1992. Predicting the behavior of finite precision Lanczos and conjugate gradient computations. SIAM Journal for Matrix Analysis and Applications 13:121–137.

    Article  MathSciNet  MATH  Google Scholar 

  • Heath, M. T., E. Ng, and B. W. Peyton. 1991. Parallel algorithms for sparse linear systems. SIAM Review 33:420–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Higham, Nicholas J. 1997. Stability of the diagonal pivoting method with partial pivoting. SIAM Journal of Matrix Analysis and Applications 18:52–65.

    Article  MathSciNet  MATH  Google Scholar 

  • Keller-McNulty, Sallie, and W. J. Kennedy. 1986. An error-free generalized matrix inversion and linear least squares method based on bordering. Communications in Statistics — Simulation and Computation 15:769–785.

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy, William J., and James E. Gentle. 1980. Statistical Computing. New York: Marcel Dekker, Inc.

    MATH  Google Scholar 

  • Kenney, C. S., and A. J. Laub. 1994. Small-sample statistical condition estimates for general matrix functions. SIAM Journal on Scientific Computing 15:191–209.

    Article  MathSciNet  MATH  Google Scholar 

  • Kenney, C. S., A. J. Laub, and M. S. Reese. 1998. Statistical condition estimation for linear systems. SIAM Journal on Scientific Computing 19:566–583.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, Alan J. 1992. Algorithm AS 274: Least squares routines to supplement those of Gentleman. Applied Statistics 41:458–478 (Corrections, 1994, ibid. 43:678).

    Google Scholar 

  • Rust, Bert W. 1994. Perturbation bounds for linear regression problems. Computing Science and Statistics 26:528–532.

    Google Scholar 

  • Saad, Y., and M. H. Schultz. 1986. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing 7:856–869.

    Article  MathSciNet  MATH  Google Scholar 

  • Sherman, J., and W. J. Morrison. 1950. Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Annals of Mathematical Statistics 21:124–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Skeel, R. D. 1980. Iterative refinement implies numerical stability for Gaussian elimination. Mathematics of Computation 35:817–832.

    Article  MathSciNet  MATH  Google Scholar 

  • Stallings, W. T., and T. L. Boullion. 1972. Computation of pseudo-inverse using residue arithmetic. SIAM Review 14:152–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart, G. W. 1990. Stochastic perturbation theory. SIAM Review 32:579–610.

    Article  MathSciNet  MATH  Google Scholar 

  • Walker, Homer F. 1988. Implementation of the GMRES method using Householder transformations. SIAM Journal on Scientific and Statistical Computing 9:152–163.

    Article  MathSciNet  MATH  Google Scholar 

  • Walker, Homer F., and Lu Zhou. 1994. A simpler GMRES. Numerical Linear Algebra with Applications 1:571–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Woodbury, M. A. 1950. “Inverting Modified Matrices”, Memorandum Report 42, Statistical Research Group, Princeton University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gentle, J.E. (2017). Solution of Linear Systems. In: Matrix Algebra. Springer Texts in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-319-64867-5_6

Download citation

Publish with us

Policies and ethics