A Model of Electrokinetic Platform for Separation of Different Sizes of Biological Particles

  • Reda Abdelbaset
  • Yehya H. Ghallab
  • Hamdy Abdelhamid
  • Yehea Ismail
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 639)

Abstract

The dielectrophoresis (DEP) phenomena is a motion of uncharged polarizable particles in the direction of most field strength site within a non-uniform electric field. Unlike various techniques, the DEP is an effective technique for particles manipulation and separation of biological particles. The manipulation and separation of biological cells are necessary to various biomedical applications such as cell biology analysis, diagnostics, and therapeutics. The traveling-wave dielectrophoresis (twDEP) and levitation are major subcategories of electro-kinetic motions that are generated as a result of the interaction between a non-uniform electric field and polarizable particles. This article presents a model of an electrokinetic platform that has a working principle of dielectrophoresis phenomena and Printed Circuit Board (PCB) technology for separation of different sizes of biological particles such as microbeads (simulated biological cells) and the blood formed elements (platelets and red blood cells (RBCs)) using two configurations of microelectrodes (traveling and levitation).

Keywords

Dielectrophoresis Separation Traveling wave Levitation Platelets Red blood cells Microbeads COMSOL 

References

  1. 1.
    Pohl, H.A.: Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, vol. 80. Cambridge University Press, Cambridge (1978)Google Scholar
  2. 2.
    Crane, J.S., Pohl, H.A.: A study of living and dead yeast cells using dielectrophoresis. J. Electrochem. Soc. 115(6), 584–586 (1968)CrossRefGoogle Scholar
  3. 3.
    Ghallab, Y.H., Badawy, W.: Lab-on-a-Chip: Techniques, Circuits, and Biomedical Applications. Artech House, Norwood (2010)Google Scholar
  4. 4.
    Çetin, B., Li, D.: Dielectrophoresis in microfluidics technology. Electrophoresis 32(18), 2410–2427 (2011)CrossRefGoogle Scholar
  5. 5.
    Washizu, M., Kurosawa, O.: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26(6), 1165–1172 (1990)CrossRefGoogle Scholar
  6. 6.
    Ghallab, Y., Badawy, W.: Sensing methods for dielectrophoresis phenomenon: from bulky instruments to lab-on-a-chip. IEEE Circ. Syst. Mag. 4(3), 5–15 (2004)CrossRefGoogle Scholar
  7. 7.
    Schmitz, A., Wagner, S., Hahn, R., Uzun, H., Hebling, C.: Stability of planar PEMFC in printed circuit board technology. J. Power Sources 127(1), 197–205 (2004)CrossRefGoogle Scholar
  8. 8.
    Spherotech - Technical - Characteristics of Polystyrene Particles. http://www.spherotech.com/particle.html
  9. 9.
    Hartley, L., Kaler, K.V.I.S., Luo, J., Paul, R.: Discrete planar electrode dielectrophoresis systems. In: IEEE 1997 Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery, vol. 1, pp. 185–192, May 1997Google Scholar
  10. 10.
    Jones, T.B.: Basic theory of dielectrophoresis and electrorotation. IEEE Eng. Med. Biol. Mag. 22(6), 33–42 (2003)CrossRefGoogle Scholar
  11. 11.
    Piacentini, N., Mernier, G., Tornay, R., Renaud, P.: Separation of platelets from other blood cells in continuous-flow by dielectrophoresis field-flow-fractionation. Biomicrofluidics 5(3), 034122 (2011)CrossRefGoogle Scholar
  12. 12.
    Egger, M., Donath, E.: Electrorotation measurements of diamide-induced platelet activation changes. Biophys. J. 68(1), 364–372 (1995)CrossRefGoogle Scholar
  13. 13.
    Park, S., Zhang, Y., Wang, T.H., Yang, S.: Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11(17), 2893–2900 (2011)CrossRefGoogle Scholar
  14. 14.
    Cen, E.G., Dalton, C., Li, Y., Adamia, S., Pilarski, L.M., Kaler, K.V.: A combined dielectrophoresis, traveling wave dielectrophoresis and electrorotation microchip for the manipulation and characterization of human malignant cells. J. Microbiol. Methods 58(3), 387–401 (2004)CrossRefGoogle Scholar
  15. 15.
    Fu, L.M., Lee, G.B., Lin, Y.H., Yang, R.J.: Manipulation of microparticles using new modes of traveling-wave-dielectrophoretic forces: numerical simulation and experiments. IEEE/ASME Trans. Mechatron. 9(2), 377–383 (2004)CrossRefGoogle Scholar
  16. 16.
    Abdelbaset, R., Ghallab, Y.H., Abdelhamid, H., Ismail, Y.: A 2D model of different electrode shapes for traveling wave dielectrophoresis. In: 28th International Conference on Microelectronics (ICM), pp. 257–260, December 2016Google Scholar
  17. 17.
    Leys, D., Schaefer, S.P., Lake Success, N.Y.: PWB dielectric substrates for lead-free electronics manufacturing. CIRCUITREE-CAMPBELL- 16, 22–27 (2003)Google Scholar
  18. 18.
    Boughriet, A., Wu, Z., McCann, H., Davis, L.E.: The measurement of dielectric properties of liquids at microwave frequencies using open-ended coaxial probes. In: Proceedings of 1st World Congress on Industrial Process Tomography, pp. 318–322, April 1999Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Reda Abdelbaset
    • 1
    • 2
  • Yehya H. Ghallab
    • 1
    • 2
  • Hamdy Abdelhamid
    • 2
  • Yehea Ismail
    • 2
  1. 1.Biomedical Engineering DepartmentHelwan UniversityHelwanEgypt
  2. 2.Center of Nano Electronics and Devices (CND) at Zewail City of Science and TechnologyThe American University in Cairo (AUC)CairoEgypt

Personalised recommendations