Skip to main content

Abstract

The presence of quantitatively inherited traits in a genotype can make the testing procedure complex, unreliable, and expensive. Under such circumstances, indirect selection using molecular markers becomes an efficient complementary breeding tool. When target traits can be easily identified and linked with one or more markers, the marker loci can be used as a surrogate for the trait, resulting in greatly enhanced breeding efficiency. Marker-assisted selection (MAS) involves the use of DNA markers instead of phenotypic selection to speed up the process of development and release of cultivars. Marker-assisted selection is useful for selecting quantitatively inherited traits that are difficult or expensive to measure, exhibit low heritability, and/or are expressed late during the developmental process. The approaches to MAS include marker-assisted backcrossing (MABC) and marker-assisted recurrent selection (MARS). Marker-assisted selection exploits the tight linkage between QTL and nearby markers and was proposed as easier, faster, and more efficient selection method. However, the use of marker-assisted selection has been limited in complex traits because of low power to detect QTL and bias in the estimated marker effects. The use of markers to track transgenes or pyramid favorable alleles determining a significant proportion of the phenotypic variance is possible for many crops, including maize. It is now generally accepted that the role of MB goes beyond the manipulation of elite alleles at a few loci in biparental segregating populations. There is a need for validation of genetic gain of favorable alleles so that markers could be developed and employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abalo, G., P. Tongoona, J. Derera, and R. Edema. 2009. A comparative analysis of conventional and marker-assisted selection methods in breeding maize streak virus resistance in maize. Crop Science 49: 509–520.

    Google Scholar 

  • Adofo-Boateng, P. 2015. Development of high-yielding and stable maize (Zea mays L.) hybrids tolerant to low soil nitrogen (Doctoral dissertation). Retrieved from University of Ghana http://ugspace.ug.edu.gh.

  • Agrama, H.A.S. 1996. Sequential path analysis of grain yield and its components in maize. Plant Breeding 115 (5): 343–346. doi:10.1111/j.1439-0523.1996.tb00931.x.

    Article  Google Scholar 

  • Agrama, H.A.S., A.G. Zakaria, F.B. Said, and M. Tuinstra. 1999. Identification of quantitative trait loci for nitrogen use efficiency in maize. Molecular Breeding 5: 187–195.

    Article  Google Scholar 

  • Almeida, G., D. Makumbi, C. Magorokosho, S. Nair, A. Borém, J.M. Ribaut, M. Bänziger, B.M. Prasanna, J. Crossa, and R. Babu. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theoretical and Applied Genetics 126: 583–600. doi:10.1007/ s00122-012-2003-7.

  • Amegbor, I. K., B. Badu-Apraku, and B. Annor. 2017. Combining ability and heterotic patterns of extra-early maturing white maize inbreds with genes from Zea diploperennis under multiple environments. Euphytica 213, 24. doi:10.1007/s10681-016-1823-y.

  • Ashikari, M., and M. Matsuoka. 2006. Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends in Plant Science 11: 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Asoro, G., M. Franco, W. Newell, M.P. Beavis, N. Tinker Scott, and J.L. Jannink. 2013. Genomic, marker-assisted, and pedigree-BLUP selection methods for β-glucan concentration in elite oat. Crop Science 53: 1894–1906.

    Article  CAS  Google Scholar 

  • Badu-Apraku, B., M. Oyekunle, R.O. Akinwale, and M. Aderounmu. 2013. Combining ability and genetic diversity of extra-early white maize inbreds under stress and nonstress environments. Crop Science 53: 9–26.

    Article  CAS  Google Scholar 

  • Bänziger, M., G.O. Edmeades, and H.R. Lafitte. 2002. Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance. Field Crops Research 75: 223–233.

    Article  Google Scholar 

  • Beavis W.D. 1994. The power and deceit of QTL experiments: Lessons from comparative QTL studies. In Proceedings of Corn Sorghum Ind. Res. Conference, 7–8 Dec 1994, Chicago, 250–266. Washington, D.C.: American Seed Trade Association.

    Google Scholar 

  • Beavis, W.D., D. Grant, M. Albertson, and R. Fincher. 1991. Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theoretical and Applied Genetics 83: 141–145.

    Article  CAS  PubMed  Google Scholar 

  • Beavis, W.D., O.S. Smith, D. Grant, and R. Fincher. 1994. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Science 34 (4): 882–896.

    Article  Google Scholar 

  • Bernardo, R. 2004. What proportion of declared QTL in plants are false? Theoretical and Applied Genetics 109: 419–424.

    Article  CAS  PubMed  Google Scholar 

  • ———. 2010. Genome wide selection with minimal crossing in self-pollinated crops. Crop Science 50: 624–627.

    Article  Google Scholar 

  • Bernardo, R., and J. Yu. 2007. Prospects for genome wide selection for quantitative traits in maize. Crop Science 47: 1082–1090.

    Article  Google Scholar 

  • Berner, D.K., F.O. Ikie, and E.I. Aigbokhan. 1996. Methods for soil infestation with Striga hermonthica seeds. Agronomy Journal 88: 33–37.

    Article  Google Scholar 

  • Bertin, P., and A. Gallais. 2000. Physiological and genetic basis of nitrogen use efficiency in maize. I. Agrophysiological results. Maydica 45: 53–66.

    Google Scholar 

  • ———. 2001. Genetic variation for nitrogen use efficiency in a set of recombinant inbred lines. II QTL. Detection and coincidences. Maydica 46: 53–68.

    Google Scholar 

  • Beyene, Y., K. Semagn, S. Mugo, A. Tarekegne, R. Babu, B. Meisel, and J. Gakunga. 2015. Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Science 55 (1): 154–163.

    Article  Google Scholar 

  • Bonnett, D.G., G.J. Rebetzke, and W. Spielmeyer. 2005. Strategies for efficient implementation of molecular markers in wheat breeding. Molecular Breeding 15: 75–85.

    Article  CAS  Google Scholar 

  • Borevitz, J. 2004. Genomic approaches to identifying quantitative trait loci: lessons from Arabidopsis thaliana. In Molecular genetics and ecology of plant adaptation, Proceedings of an International Workshop, 11–13 Dec 2002, Vancouver, ed. Q.C.B. Cronk, J. Whitton, R.H. Ree, and I.E.P. Taylor, 53–60. Ottawa: NCR Research Press.

    Google Scholar 

  • Calenge, F., D. Drouet, C. Denancé, W.E. Van de Weg, M.N. Brisset, J.P. Paulin, and C.E. Durel. 2005. Identification of a major QTL together with several minor additive or epistatic QTLs for resistance to fire blight in apple in two related progenies. Theoretical and Applied Genetics 111: 128–135. (Available online at: http://dx.doi.org/10.1007/s00122-005-2002-z) (verified 1 Jan 2011).

    Article  CAS  PubMed  Google Scholar 

  • Chardon, F., B. Virlon, L. Moreau, M. Falque, J. Joets, L. Decousset, A. Murigneux, and A. Charcosset. 2004. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168: 2169–2185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, N., J. Drake, M. Ayliffe, Q. Sun, J. Ellis, S. Hulbert, and T. Pryora. 1999. Molecular characterization of the maize Rp1 D rust resistance haplotype and its mutants. Plant Cell 11: 1365–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colton, L.M., H.I. Groza, S.M. Wielgus, and J.M. Jiang. 2006. Marker-assisted selection for the broad-spectrum potato late blight resistance conferred by gene RB derived from a wild potato species. Crop Science 46: 589–594. (Available online at: http://dx.doi.org/10.2135/cropsci2005.0112) (verified 1 Jan 2011).

    Article  CAS  Google Scholar 

  • Cooper, M., F.A. van Eeuwijk, S.C. Chapman, D.W. Podlich, and C. Löffler. 2006. Genotype-by environment interactions under water-limited conditions. In Drought adaptation in cereals, ed. J.-M. Ribaut, 51–95. Binghampton: The Haworth Press Inc.

    Google Scholar 

  • Davies, J., W. Berzonsky, and G. Leach. 2006. A comparison of marker-assisted and phenotypic selection for high grain protein content in spring wheat. Euphytica 152: 117–134.

    Article  CAS  Google Scholar 

  • Dreher, K., M. Morris, M. Khairallah, J.M. Ribaut, S. Pandey, and G. Srinivasan. 2000. Is marker assisted selection cost effective compared to conventional plant breeding methods? The case of quality protein maize. In Proceedings of 4th annual conference international consortium on Agricultural Biotechnology Research (ICABR). Ravello: The Economics of Agricultural Biotechnology.

    Google Scholar 

  • Dwivedi, S.L., H.D. Upadhyaya, J. Balaji, H.K. Buhariwalla, M.W. Blair, R. Ortiz, J.H. Crouch, and R. Serraj. 2006. Using genomics to exploit grain legume biodiversity in crop improvement. Plant Breeding Reviews 26: 171–357.

    CAS  Google Scholar 

  • Dwivedi, S.L., H.T. Stalker, M.W. Blair, D. Bertioli, H.D. Upadhyaya, S. Nielen, and O. Rodomiro. 2007. Enhancing crop gene pools of cereals and legumes with beneficial traits using wild relatives. Plant Breeding Reviews 30. in press.

    Google Scholar 

  • Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Essex: Longman and Company.

    Google Scholar 

  • Fernie, A.R., Y. Tadmorand, and D. Zami. 2006. Natural genetic variation for improving crop quality. Current Opinion in Plant Biology 9: 196–202.

    Article  PubMed  Google Scholar 

  • Flint-Garcia, S.A., J.M. Thornsberry, and E.S. Buckler. 2003. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology 54: 357–374.

    Article  CAS  PubMed  Google Scholar 

  • Francia, E., G. Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall'Aglio, and G. Valè. 2005. Marker assisted selection in crop plants. Plant Cell, Tissue and Organ Culture. 82: 317–342. doi:10.1007/s11240-005-2387-z.

    Article  CAS  Google Scholar 

  • Fridman, E., F. Carrari, Y.S. Liu, A.R. Fernie, and D. Zamir. 2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305: 1786–1789.

    Article  CAS  PubMed  Google Scholar 

  • Frisch, M., and A.E. Melchinger. 2005. Selection theory for marker-assisted backcrossing. Genetics 170: 909–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman, R.M., H. Hauptli, A. Crossway, and V.C. Knauf. 1987. Gene transfer in crop improvement. Science 236: 48–54.

    Article  CAS  PubMed  Google Scholar 

  • Gore, M.A., J.M. Chia, R.J. Elshire, Q. Sun, E.S. Ersoz, B.L. Hurwitz, et al. 2009. A first-generation haplotype map of maize. Science 326: 1115–1117. doi:10.1126/science.1177837.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, B.J., P.J. Bowman, A.C. Chamberlain, and M.E. Goddard. 2009. Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science 92: 433–443. doi:10.3168/jds.2008-1646.

    Article  CAS  PubMed  Google Scholar 

  • Heffner, E.L., M.E. Sorrells, and J.L. Jannink. 2009. Genomic selection for crop improvement. Crop Science 49: 1–12.

    Article  CAS  Google Scholar 

  • Hirel, B., P. Bertin, I. Quillere, W. Bourdoncle, C. Attagnant, C. Dellay, A. Gouy, S. Cadiou, C. Retailliau, M. Falque, and A. Gallais. 2001. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiology 125 (3): 1258–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hospital, F. 2009. Challenges for effective marker-assisted selection in plants. Genetica 136: 303–310.

    Article  PubMed  Google Scholar 

  • Hospital, F., and A. Charcosset. 1997. Marker-assisted introgression of quantitative trait loci. Genetics 147: 1469–1485. (Available online at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1208267/pdf/ge14731469.pdf (verified 18 Oct 2010). https://en.wikipedia.org/wiki/Marker-assisted_selection (accessed on January 8, 2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ifie, B.E., B. Badu-Apraku, V. Gracen, and E.Y. Danquah. 2015. Genetic analysis of grain yield of IITA and CIMMYT early-maturing maize inbreds under Striga-infested and low–soil-nitrogen environments. Crop Science 55: 610–623. doi:10.2135/cropsci2014.07.0470.

    Article  Google Scholar 

  • Jannink, J.L. 2010. Dynamics of long-term genomic selection. Genetics, Selection, Evolution 42: 35. doi:10.1186/1297-9686-42-35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jian, C., and Z.B. Zeng. 1995. Multiple trait analysis of genetic method for which the intermarker distances need not mapping for quantitative trait loci. Genetics 140: 1111–1127.

    Google Scholar 

  • Khan, M.A., B. Duffy, C. Gessler, and A. Patocchi. 2006. QTL mapping of fire blight resistance in apple. Molecular Breeding 17: 299–306. (Available online at: http://dx.doi.org/10.1007/s11032-006-9000-y) (verified 1 Jan 2011).

    Article  Google Scholar 

  • Khan, M.A., C.E. Durel, B. Duffy, D. Drouet, M. Kellerhals, C. Gessier, and A. Patocchi. 2007. Development of molecular markers linked to the ‘Fiesta’ linkage group 7 major QTL for fire blight resistance and their application for marker-assisted selection. Genome 50: 568–577. (Available online at: http://dx.doi.org/10.1139/G07-033) (verified 1 Jan 2011).

    Article  CAS  PubMed  Google Scholar 

  • Kim, S.K. 1994. Genetics of maize tolerance of S. hermonthica. Crop Science 34: 900–907.

    Article  Google Scholar 

  • Kling, J.G., S.O. Oikeh, H.A. Akintoye, H.T. Heuberger, and W.J. Horst. 1996. Combining ability for nitrogen use in maize. In Developing drought- and -low N-tolerant maize, Proceedings of a symposium, March 25-29, 1996, ed. G.O. Edrneades, M. Banziger, H.R. Mickelson, and C.B. Pena Valdivia, 490–501. El Batan: CIMMYT.

    Google Scholar 

  • Kling, J.G., J.M. Fajemisin, B. Badu-Apraku, A. Diallo, A. Menkir, and A. Melake-Berhan. 2000. Striga resistance breeding in maize. In Breeding for Striga resistance in cereals, ed. B.I.G. Haussmann, D.E. Hess, M.L. Koyama, L. Grivet, H.F.W. Rattunde, and H.H. Geiger, 103–118. Margraf Verlag: Ibadan, Nigeria.

    Google Scholar 

  • Knoll, J., and G. Ejeta. 2008. Marker-assisted selection for early-season cold tolerance in sorghum: QTL validation across populations and environments. Theoretical and Applied Genetics 116: 541–553. (Available online at: http://dx.doi.org/10.1007/s00122-007-0689-8) (verified 1 Jan 2011).

    Article  PubMed  Google Scholar 

  • Lagoke S.T.O., V. Parkinson, and R.M. Agunbiade. 1991. Parasitic weeds and control methods in Africa. In Combating Striga in Africa: Proceedings of the international workshop organized by IITA, ICRISAT and IDRC, 22–24 Aug 1988, IITA, Ibadan, Nigeria. ed. S.K. Kim, 3–14.

    Google Scholar 

  • Lamkey, C.M., T.C. Helms, and R.J. Goos. 2013. Marker-assisted versus phenotypic selection for iron-deficiency chlorosis in soybean. Euphytica 194: 67–78.

    Article  CAS  Google Scholar 

  • Lande, R., and R. Thompson. 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lander, E.S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, M. 1995. DNA markers and plant breeding programs. Advances in Agronomy 55: 265–344.

    Article  CAS  Google Scholar 

  • Li, W.J., Z.Z. Liu, Y.S. Shi, Y.C. Song, T.Y. Wang, C.W. Xu, and Y. Li. 2010. Detection of consensus genomic region of QTL relevant to drought-tolerance in maize by QTL meta-analysis and bioinformatics approach. Acta Agronomica Sinica 36: 1457–1467. doi:10.1016/S1875-2780(09)60072-9.

    Article  CAS  Google Scholar 

  • Limami, A.M., and D. de Vienne. 2001. Natural genetic variability in nitrogen metabolism. In Plant Nitrogen, 369–378. Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Lorenz, A.J., S. Chao, F.G. Asoro, E.L. Heffner, T. Hayashi, H. Iwata, K.P. Smith, M.E. Sorrells, and J.L. Jannink. 2011. Genomic selection in plant breeding: Knowledge and prospects. Advances in Agronomy 110: 77–123. doi:10.1016/B978-0-12-385531-2.00002-5.

    Article  Google Scholar 

  • Lorenz, A.J., K.P. Smith, and J.L. Jannink. 2012. Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Science 52: 1609–1621. doi:10.2135/cropsci2011.09.0503.

    Article  Google Scholar 

  • Lü, H.Y., X.F. Liu, S.P. Wei, and Y.M. Zhang. 2011. Epistatic association mapping in homozygous crop cultivars. PLoS One 6 (3): e17773.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malosetti, M., J.M. Ribaut, M. Vargas, J. Crossa, and F.A. van Eeuwijk. 2008. A multi-trait multi-environment QTL mixed model with an application to drought and nitrogen stress trials in maize (Zea mays L.). Euphytica 161: 241–257. doi:10.1007/s10681-007-9594-0.

    Article  Google Scholar 

  • Massman, J.M., H.J.G. Jung, and R. Bernardo. 2012. Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Science 53: 58–66. doi:10.2135/cropsci2012.02.0112.

    Article  CAS  Google Scholar 

  • Melchinger, A.E., H.F. Utz, and C.C. Schon. 1998. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149: 383–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menkir, A., J.G. Kling, B. Badu-Apraku, and O. Ibikunle. 2006. Registration of 26 tropical maize germplasm lines with resistance to Striga hermonthica. Crop Science 46: 1007–1009.

    Article  Google Scholar 

  • Meuwissen, T.H.E., B.J. Hayes, and M.E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819–1829.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miklas, P.N., J.D. Kelly, S.E. Beebe, and M.W. Blair. 2006. Common bean breeding for resistance against biotic and abiotic stresses: From classic to MAS breeding. Euphytica 147: 105–131.

    Article  CAS  Google Scholar 

  • Morris, M.C., P. Kaiser, S. Rudyak, C. Baskerville, M.H. Watson, and S.I. Reed. 2003. Cks1-dependent proteasome recruitment and activation of CDC20 transcription in budding yeast. Nature 423 (6943): 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Navara, S., and K.P. Smith. 2014. Using near-isogenic barley lines to validate deoxynivalenol (DON) QTL previously identified through association analysis. Theoretical and Applied Genetics 127: 633–645.

    Article  CAS  PubMed  Google Scholar 

  • Peleman, J.D., and J.R. Van Der Voort. 2003. Breeding by design. Trends in Plant Science 7: 330–334.

    Article  CAS  Google Scholar 

  • Pollmer, W.G., D. Eberhard, D. Klein, and B.S. Dhillon. 1979. Genetic control of nitrogen uptake and translocation in maize. Crop Science 19: 82–85.

    Article  CAS  Google Scholar 

  • Rafalski, A. 2002. Application of single nucleotide polymorphisms in crops genetics. Current Opinion in Plant Biology 5: 94–100.

    Article  CAS  PubMed  Google Scholar 

  • Reiter, P., M.A. Amador, and N. Colon. 1991. Enhancement of the CDC ovitrap with hay infusion for daily monitoring of Aedes aegypti populations. Journal of the American Mosquito Control Association 7: 52–55.

    CAS  PubMed  Google Scholar 

  • Ribaut, J.M. 2007. The challenges of biotechnologies to improve plant breeding efficiency: In Booklet produced for the Annual Barwale Foundation Lecture Day. New Delhi: Barwale Foundation. 24 p.

    Google Scholar 

  • Ribaut, J.M., and J. Betran. 1999. Single large-scale marker-assisted selection (SLS–MAS). Molecular Breeding 5: 531–541. doi:10.1023/A:1009631718036.

    Article  Google Scholar 

  • Ribaut, J.M., and M. Ragot. 2007. Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. Journal of Experimental Botany 58: 351–360.

    Article  CAS  PubMed  Google Scholar 

  • Ribaut, J.M., D.A. Hoisington, J.A. Deutsch, C. Jiang, and D. Gonzales de Leon. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. I. Flowering parameters and the anthesis-silking interval. Theoretical and Applied Genetics 92: 905–914.

    Article  CAS  PubMed  Google Scholar 

  • Ribaut, J.M., C. Jiang, D. González-de-Leon, G.O. Edmeades, and D.A. Hoisington. 1997. Identification of quantitative trait loci under drought conditions in tropical maize: Yield components and marker-assisted selection strategies. Theoretical and Applied Genetics 94: 887–896.

    Article  Google Scholar 

  • Ribaut, J.M., H.M. William, M. Khairallah, A.J. Worland, and D. Hoisington. 2001. Genetic basis of physiological traits. In Application of physiology in wheat breeding. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Ribaut, J.M., C. Jiang, and D. Hoisington. 2002. Simulation experiments on efficiencies of gene introgression by backcrossing. Crop Science 42 (2): 557–565.

    Article  Google Scholar 

  • Ribaut, J.M., Y. Fracheboud, P. Monneveux, M. Banziger, M. Vargas, and C.J. Jiang. 2007. Quantitative trait loci for yield and correlated traits under high and low soil nitrogen conditions in tropical maize. Molecular Breeding 20: 15–29.

    Article  CAS  Google Scholar 

  • Rosyara, U.R. 2006. Requirement of robust molecular marker technology for plant breeding applications. Journal of Plant Breed. Gr. 1: 67–72.

    Google Scholar 

  • Rosyara U.R., K.L. Maxson-Stein, K.D. Glover, J.M. Stein, J.L. Gonzalez-Hernandez. 2007. Family-based mapping of FHB resistance QTLs in hexaploid wheat. Proceedings of National Fusarium head blight forum, 2–4 Dec 2007, Kansas City.

    Google Scholar 

  • Rosyara, U.R., J.L. Gonzalez-Hernandez, K.D. Glover, K.R. Gedye, and J.M. Stein. 2009. Family-based mapping of quantitative trait loci in plant breeding populations with resistance to Fusarium head blight in wheat as an illustration. Theoretical and Applied Genetics 118: 1617–1631.

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski, J., R.P. Singh, J. Huerta-Espino, S. Bhavani, J. Poland, J.L. Jannink, and M.E. Sorrells. 2015. Efficient use of historical data for genomic selection: A case study of stem rust resistance in wheat. Plant Genome. 8: 1.

    Google Scholar 

  • Sabadin, P.K., C.L. Souza Jr., A.P. Souza, and A.A.F. Garcia. 2008. QTL mapping for yield components in a tropical maize population using microsatellite markers. Hereditas 145: 194–203. Lund, Sweden. eISSN 1601-5223.

    Article  Google Scholar 

  • Sallam, A.H., J.B. Endelman, J.L. Jannink, and K.P. Smith. 2015. Assessing genomic selection prediction accuracy in a dynamic barley breeding population. Plant Genome 8 (1). doi:10.3835/plantgenome2014.05.0020.

  • Salvi, S., R. Tuberosa, E. Chiapparino, M. Maccaferri, S. Veillet, L. van Beuningen, P. Isaac, K. Edwards, and R.L. Phillips. 2002. Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Molecular Biology 48: 601–613.

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer, C. 2004. The evolution of molecular markers-just a matter of fashion? Nature Reviews. Genetics 5: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Serraj, R., T. Hash, S.M.H. Rizvi, A. Sharma, R.S. Yadav, and F.R. Bindiger. 2005. Recent advances in marker-assisted selection for drought tolerance pearl millet. Plant Production Science 8: 334–337.

    Article  Google Scholar 

  • Šimić, D., T. Ledenčan, A. Jambrović, Z. Zdunić, J. Brkić, A. Brkić, S. Mladenović Drinić, and I. Brkić. 2009. SNP and SSR marker analysis and mapping of a maize population. Genetika 41 (3): 237–246.

    Article  Google Scholar 

  • Soller, M., and J. Plotkinhazan. 1977. Use of marker alleles for introgression of linked quantitative alleles. Theoretical and Applied Genetics 51: 133–137. (Available online at: http://springerlink.metapress.com/content/q6155471172w1547/ (verified 1 Jan 2011).

    CAS  PubMed  Google Scholar 

  • Song, J.Q., J.M. Bradeen, S.K. Naess, J.A. Raasch, S.M. Wielgus, G.T. Haberlach, J. Liu, H.H. Kuang, S. Austin-Phillips, C.R. Buell, J.P. Helgeson, and J.M. Jiang. 2003. Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Sciences of the United States of America 100: 9128–9133. (Available online at: http://dx.doi.org/10.1073/pnas.1533501100) (verified 1 Jan 2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner, D., R. van Treuren, and M.C. de Vicente. 2005. Molecular markers for gene bank management, IPGRI Technical Bulletin No 10, 130. Rome: International Plant Genetic Resources Institute.

    Google Scholar 

  • Stam, P. 1995. Marker-assisted breeding. In Biometrics in plant breeding: applications of molecular markers. Proceedings of the ninth meeting of the EUCARPIA Section Biometrics in Plant Breeding, ed. J.W. Van Ooijen and J. Jansen, 32–44. Wageningen: CPRO-DLO.

    Google Scholar 

  • Tanksley, S.D. 1983. Molecular markers in plant breeding. Plant Molecular Biology Reporter 1: 3–8. (Available online at: http://dx.doi.org/10.1007/BF02680255) (verified 1 Jan 2011).

    Article  CAS  Google Scholar 

  • Tanksley, S.D., and J. Hewitt. 1988. Use of molecular markers in breeding for soluble solids content in tomato – A re-examination. Theoretical and Applied Genetics 75: 811–823. (Available online at: http://dx.doi.org/10.1007/BF00265610) (verified 1 Jan 2011).

    Article  CAS  Google Scholar 

  • Tanksley, S.D., and S.R. McCouch. 1997. Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277: 1063–1066.

    Article  CAS  PubMed  Google Scholar 

  • Tanksley, S.D., N.D. Young, A.H. Paterson, and M.W. Bonierbale. 1989. RFLP mapping in plant breeding: New tools for an old science. Biotechnology 7: 257–264.

    CAS  Google Scholar 

  • Tuberosa, R., M.C. Sanguineti, P. Landi, M.M. Giuliani, S. Salvi, and S. Conti. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Molecular Biology 48: 697–712.

    Article  CAS  PubMed  Google Scholar 

  • Vargas, M., F. vanEeuwijk, J. Crossa, and J.M. Ribaut. 2006. Mapping QTLs and QTL environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theoretical and Applied Genetics 112: 1009–1023.

    Article  CAS  PubMed  Google Scholar 

  • Wang, D., S.I. El-Basyoni, S.P. Baenziger, J. Crossa, K.M. Eskridge, and I. Dweikat. 2012a. Prediction of genetic values of quantitative traits with epistatic effects in plant breeding populations. Heredity 109: 313–319. doi:10.1038/hdy.2012.44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., M. Ulloa, T.R. Mullens, J. Yu, and P.A. Roberts. 2012b. QTL analysis for transgressive resistance to root-knot nematode in interspecific cotton (Gossypium spp.) progeny derived from susceptible parents. PLoS One 7: e34874. doi:10.1371/journal.pone.0034874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde, F., V. Korzun, E. Ebmeyer, H. Geiger, and T. Miedaner. 2007. Comparison of phenotypic and marker-based selection for Fusarium head blight resistance and DON content in spring wheat. Molecular Breeding 19: 357–370.

    Article  CAS  Google Scholar 

  • Würschum, T. 2012. Mapping QTL for agronomic traits in breeding populations. Theoretical and Applied Genetics 125 (2): 201–210. doi:10.1007/s00122-012-1887-6.

    Article  PubMed  Google Scholar 

  • Yabe, S., R. Ohsawab, and H. Iwata. 2013. Potential of genomic selection for mass selection breeding in annual allogamous crops. Crop Science 53: 95–105.

    Article  Google Scholar 

  • Yousef, G.G., and J.A. Juvik. 2001. Comparison of phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Science 41: 645–655.

    Article  Google Scholar 

  • Zaidi, P.H., K. Seetharam, M.T. Vinayan, P. Nagesh, R. Babu, and B.S. Vivek. 2015. Abiotic stress-resilient maize for adaptation to climate change in the Asian tropics. In: B.M. Prasanna, B.S. Vivek, A.R. Sadananda, Daniel Jeffers, P.H. Zaidi, Christian Boeber, Olaf Erenstein, Raman Babu, Sudha K. Nair, Bruno Gerard, M.L. Jat, Natalia Palacios and Kevin Pixley (editors). Book of Extended Summaries, 12th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security. Bangkok, Thailand, October 30 –November 1, 2014. CIMMYT, Mexico D.F. and APAARI, Bangkok.

    Google Scholar 

  • Zheng, H.J., A.Z. Wu, C.C. Zheng, Y.F. Wang, R. Cai, X.F. Shen, R.R. Xu, P. Liu, L.J. Kong, and S.T. Dong. 2009. QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breeding 128: 54–62. doi:10.1111/j.1439-0523.2008.01529.x.

    Article  CAS  Google Scholar 

  • Zhou, M.Z. 2010. Improvement of plant water logging tolerance. In Waterlogging signaling and tolerance in plants, ed. S. Mancuso and S. Shabala, 267–285. Heidelberg: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badu-Apraku, B., Fakorede, M.A.B. (2017). Molecular Approaches to Maize Improvement. In: Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-64852-1_8

Download citation

Publish with us

Policies and ethics