Skip to main content

Genetic Diversity, Heterotic Grouping, and Testers in Hybrid Maize Production

  • Chapter
  • First Online:
Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa

Abstract

Heterosis, the superior performance of a hybrid over the average of its two parents (known as mid-parent heterosis) or over the better parent (known as heterobeltiosis), is an indispensable concept in maize breeding, especially in the hybrid development programs. The level of expression of heterosis is determined by genetic diversity of the parental lines, type of gene action controlling the trait under consideration, type of testers used to evaluate the parental lines, and environmental factors. At the initial stages of genetic improvement of maize, statistical and quantitative determination of heterosis was established. The concept of combining ability was introduced and used to identify parental lines whose hybrids were highly heterotic. Combining ability estimates have also been used to classify maize germplasm into heterotic groups and heterotic patterns to maximize maize productivity in hybrid combinations. Recently, molecular approaches have been used to refine genetic diversity and combining ability studies and this has resulted in higher hybrid maize productivity at relatively faster and cheaper rates. Presently trending are two efficacious models, one of which was developed by IITA maize breeders and their national scientist collaborators for heterotic classification of inbred lines in hybrid production. Details of the different approaches, along with empirical evidence for classification of early and extra-early maize germplasm into heterotic groups in SSA, are presented in this Chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adetimirin, V.O., I. Vroh, C. The, A. Menkir, S. Mitchell, and S. Kresovich. 2008. Diversity analysis of elite maize inbred lines adapted to west and central Africa using SSR markers. Maydica 53: 143–149.

    Google Scholar 

  • Agbaje, S.A., B. Badu-Apraku, and M.A.B. Fakorede. 2008. Heterotic patterns of early maturing maize inbred lines in Striga-free and Striga infested environments. Maydica 53: 87–96.

    Google Scholar 

  • Akaogu, I.C., B. Badu-Apraku, V.O. Adetimirin, I. Vroh, M. Oyekunle, and R. Akinwale. 2012. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga infested and Striga-free environments. The Journal of Agricultural Science. doi:10.1017/S0021859612000652.

  • Akinwale, R.O., B. Badu-Apraku, M.A.B. Fakorede, and I. Vroh-Bi. 2014. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crops Research 156 (2014): 48–62.

    Article  Google Scholar 

  • Akkaya, M.S., A.A. Bhagwat, and P.B. Cregan. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131–1139.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Annor, B., and B. Badu-Apraku. 2016. Gene action controlling grain yield and other agronomic traits of extra-early quality protein maize under stress and non-stress conditions. Euphytica 212 (2): 213–228. https://doi.org/10.1007/s10681-016-1757-4.

    Article  CAS  Google Scholar 

  • Badu-Apraku, B., and A.F. Lum. 2007. Agronomic performance of Striga resistant early-maturing maize varieties and inbred lines in the savannas of West and Central Africa. Crop Science 47: 2–15.

    Article  Google Scholar 

  • Badu-Apraku, B., and M. Oyekunle. 2012. Genetic analysis of grain yield and other traits of extra-early yellow maize inbreds and hybrid performance under contrasting environments. Field Crops Res 129: 99–110.

    Article  Google Scholar 

  • Badu-Apraku, B., A. Menkir, and J.G. Kling. 2006. Registration of 16 Striga resistant early maturing tropical maize inbred lines. Crop Science 46: 1410–1411.

    Article  Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, and R.O. Akinwale. 2011. Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid pro-duction. Maydica 56: 1721–1735.

    Google Scholar 

  • Badu-Apraku, B., M. Oyekunle, A. Menkir, K. Obeng-Antwi, C.G. Yallou, I. Usuman, and H. Alidu. 2013. Comparative performance of early maturing maize cultivars developed in three eras under drought stress and well-watered environments in West Africa. Crop Science53: 1298–1311. doi:10.2135/cropsci2012.11.0640.

  • Badu-Apraku, B., M.A.B. Fakorede, A.O. Talabi, M. Oyekunle, I.C. Akaogu, R.O. Akinwale, B. Annor, G. Melaku, Y. Fasanmade, and M. Aderounmu. 2015a. Gene action and heterotic groups of early white quality protein maize inbreds under multiple stress environments. Crop Science. doi:10.2135/cropsci2015.05.0276. Accepted paper, posted 09/18/2015.

  • Badu-Apraku, B., M.A.B. Fakorede, M. Gedil, A.O. Talabi, B. Annor, M. Oyekunle, R.O. Akinwale, T.Y. Fasanmade, I.C. Akaogu, and M. Aderounmu. 2015b. Heterotic responses among crosses of IITA and CIMMYT early white maize inbred lines under multiple stress environments. Euphytica. doi:10.1007/s10681-015-1506-0.

  • Badu-Apraku, B., C.G. Yallou, A. Haruna, A.O. Talabi, I.C. Akaogu, B. Annor, and A. Adeoti. 2016. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Science. doi:10.2135/cropsci2016.02.0089.

  • Balestre, M., J.C. Machado, J.L. Lima, J.C. Souza, and L. Nóbrega-Filho. 2008. Genetic distance estimates among single cross hybrids and correlation with specific combining ability and yield in corn double cross hybrids. Genetics and Molecular Research 7 (1): 65–73.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, B.A., and K.K. Kidwell. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Science 38: 126–127.

    Google Scholar 

  • Beck, D.L., S.K. Vassal, and J. Crossa. 1990. Heterosis and combining ability of CIMMYT’ s tropicalearly and intermediate maturity maize germplasm. Maydica 35: 279–285.

    Google Scholar 

  • Beck, D.L., S.K. Vasal, and J. Crossa. 1991. Heterosis and combining ability among subtropical and temperate intermediate maturity maize germplasm. Crop Science 31: 68–73.

    Article  Google Scholar 

  • Benchimol, L.L., C.L. de Souza Jr, A.A.F. Garcia, P.M.S. Kono, C.A. Mangolin, A.M.M. Barbosa, A.S.G. Coelho, and A.P. de Souza. 2008. Genetic diversity in tropical maize inbred lines: Heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breeding 119: 491–496. doi:10.1046/j.1439- 0523.2000.00539.

    Article  Google Scholar 

  • Betran, F.J., M. Bänziger, and D.L. Beck. 1997. Relationship between line and topcross performance under drought and non-stressed conditions in tropical maize. In: Developing drought and low N-tolerant maize, ed. G.O. Edmeades, M. Bänziger, H.R. Mickelson, and C.B. Peña-Valdivia, 383–386. Proceedings of a Symposium, 25–29 March 1996, CIMMYT, El Batán, Mexico. Mexico, D.F.: CIMMYT.

    Google Scholar 

  • Betrán, F.J., D. Beck, M. Bänziger, and G.O. Edmeades. 2003a. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Res. 83: 51–65.

    Article  Google Scholar 

  • ———. 2003b. Genetic analysis of inbred and hybrid grain yield under stress and non-stress environments in tropical maize. Crop Science 43: 807–817.

    Article  Google Scholar 

  • Blum, A. 1997. Constitutive traits affecting plant performance under stress. In Developing drought and low-N tolerant maize, ed. G.O. Edmeades, M. Bänziger, H.R. Mickelson, and C.B. Peña-Valdivia, 131–135. CIMMYT: El Batan, Mexico.

    Google Scholar 

  • Cox, D.W., B.J. Andrews, and D.E. Wills. 1986. Genetic polymorphism of alpha-2-HS-glycoprotein. American Journal of Human Genetics 38: 699–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crossa, J., C.O. Gardner, and R.F. Mumm. 1987. Heterosis among populations of maize with different levels of exotic germplasm. Theoretical and Applied Genetics 73: 445–450.

    Article  CAS  PubMed  Google Scholar 

  • Crossa, J., S. Taba, and E.J. Wellhausen. 1990. Heterotic patterns among mexican races of maize. Crop Science 30: 1182–1190.

    Article  Google Scholar 

  • Dellaporta, S.L., J. Wood, and J.B. Hicks. 1983. A plant DNA mini-preparation: version II. Plant Molecular Biology Reporter 1: 19–21.

    Article  CAS  Google Scholar 

  • Drinic, M., S. Ladenovic, S. Trifunovic, G. Drinic, and K. Konstantinov. 2002. Genetic diversity and its correlation to heterosis in maize as revealed by SSR-based markers. Maydica 47: 1–8.

    Google Scholar 

  • Duvick, D.N. 1999. Heterosis feeding people and protecting resources. In The genetics and exploitation of heterosis in crops, ed. J.G. Coors and S. Pandey, 19–29. Madison, WI: ASSA/CSSA/SSA.

    Google Scholar 

  • Enoki, H., H. Sato, and K. Koinuma. 2002. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theoretical and Applied Genetics 104: 1270–1278.

    Article  CAS  PubMed  Google Scholar 

  • Falconer, D.S. 1989. Introduction to quantitative genetics. 3rd ed. New York: Longman Scientific and Technical. 438 p.

    Google Scholar 

  • Falconer, D.S., and T.F.C. Mackay. 1996. Introduction to quantitative genetics. 4th ed. Essex: Longman.

    Google Scholar 

  • Fan, S., X. Zhang, and N. Rao. 2004. Public expenditure, growth and poverty reduction in rural Uganda, Development Strategy and Governance Division Discussion Paper 4. International Food Policy Research Institute, Washington, D.C..

    Google Scholar 

  • Fan, X.M.Y., M. Zhang, W.H. Yao, H.M. Chen, J. Tan, C.X. Xu, X.L. Han, L.M. Luo, and M.S. Kang. 2008. Classifying maize inbred lines into heterotic groups using a factorial mating design. Agronomy Journal 101: 106–112.

    Article  Google Scholar 

  • Fan, Z., J. Du, H. Liu, H. Zhang, A.A. Dlugosz, C.Y. Wang, M. Fan, Y. Shen, and S. Wang. 2009. A susceptibility locus on 1p32-1p34 for congenital macrostomia in a Chinese family and identification of a novel PTCH2 mutation. (Letter) Am. Journal of Medical Genetics 149A: 521–524.

    CAS  Google Scholar 

  • Gauthier, P., B. Gouesnard, J. Dallard, R. Redaelli, C. Rebourg, and A. Charcosset. 2002. RFLP diversity and relationships among traditional European maize populations. Theoretical and Applied Genetics 105: 91–99.

    Article  CAS  PubMed  Google Scholar 

  • George, M.L.C., F. Salazer, M. Warburton, L. Namo, and F.A. Vallejo. 2010. Genetic distance and hybrid value in tropical maize under P stress and non-stress conditions in acid soils. Euphytica. doi:10.1007/s 10681-010-0273-1.

  • Ghebru, B., R.J. Schmidt, and J.L. Bennetzen. 2002. Genetic diversity of Eritrea sorghum landraces assessed with simple sequence repeats (SSR) markers. Theories of Applied Genetics 105: 229–236.

    Article  CAS  Google Scholar 

  • Glover, M., D. Willmot, L. Darrah, B. Hibbard, and X. Zhu. 2005. Diallel analysis of agronomic traits using Chinese and U.S. maize germplasm. Crop Science 45 (3): 1096–1102.

    Article  Google Scholar 

  • Godshalk, E.B., M. Lee, and K.R. Lamkey. 1990. Relationship of restriction fragment length polymorphism to single cross hybrid performance in maize. Theoretical and Applied Genetics 80: 273–280.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, P.K., and R.K. Varshney. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113: 163–185.

    Article  CAS  Google Scholar 

  • Hallauer, A.R., and J.B. Miranda. 1988. Quantitative genetics in maize breeding. Ames: Iowa State University Press.

    Google Scholar 

  • Hoxha, S., M.R. Shariflou, and P. Sharp. 2004. Evaluation of genetic diversity in Albanian maize using SSR markers. Maydica 49: 97–103.

    Google Scholar 

  • Ifie, B.E., B. Badu-Apraku, V. Gracen, and E.Y. Danquah. 2014. Genetic analysis of grain yield of IITA and CIMMYT early-maturing maize inbreds under Striga-infested and low-soil nitrogen environments. Crop Science. doi:10.2135/crop sci 2014.07.0470.

  • Jinks, J.L. 1983. Biometrical genetics of heterosis. In Heterosis, monographs on theoretical and applied genetics, 6, ed. R. Frankel, 140. Berlin: Springer.

    Google Scholar 

  • Kiula, B.A., N.G. Lyimo, and A.M. Botha. 2008. Association between AFLP-based genetic distance and hybrid performance in tropical maize. Plant Breeding 127: 140–144.

    Article  CAS  Google Scholar 

  • Kubik, C., M. Sawkins, W.A. Meyer, and B.S. Gaut. 2001. Genetic diversity in seven perennial ryegrass (Loliumperenne L.) cultivars based on SSR markers. Crop Science 41: 1565–1572.

    Article  CAS  Google Scholar 

  • Lafitte, H.R., and G.O. Edmeades. 1995. Association between traits in tropical maize inbred lines and their hybrids under high and low soil nitrogen. Maydica 40: 259–267.

    Google Scholar 

  • Lanza, L.L.B., C.L. de Souza Jr, L.M.M. Ottoboni, M.L.C. Vieira, and A.P. de Souza. 1997. Genetic distance of inbred lines and prediction of maize single cross performance using RAPD markers. Theoretical and Applied Genetics 94: 1023–1030.

    Article  CAS  Google Scholar 

  • Lee, M., E.B. Goldshalk, R.K. Lamkey, and W.W. Woodman. 1989. Association of restriction fragment length polymorphisms among maize inbreds with agronomic performance of their crosses. Crop Sci. 29: 1067–1071.

    Article  Google Scholar 

  • Legesse, Y., A. Tengegn, T. Belachew, and K. Tushune. 2007. Knowledge, Attitude and Practice about Malaria Transmission and its Preventive Measures among Households in Urban Areas of Assosa Zone, Western Ethiopia. Ethiop J. Health Dev. 21: 157–165.

    Google Scholar 

  • Liu, X., C.N. Kim, J. Yang, R. Jemmerson, and X. Wang. 1996. Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome. Cell 86: 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Makumbi, D. 2005. Phenotypic and genotypic characterization of white maize inbreds, hybrids and synthetics under stress and non-stress environments. Doctoral dissertation, Texas A&M University, Texas A&M University. Available electronically from http://hdl.handle.net/1969.1/4188.

  • Makumbi, D., J.F. Betran, M. Banziger, and J.M. Ribaut. 2011. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180: 143–162.

    Article  Google Scholar 

  • Matsuoka, Y., S.E. Mitchell, S. Kresovich, M.M. Goodman, and J. Doebley. 2002. Microsatellites in Zea—variability, patterns of mutations, and use for evolutionary studies. Theoretical and Applied Genetics 104: 436–450.

    Article  CAS  PubMed  Google Scholar 

  • Melchinger, A.E. 1993. Use of RFLP markers for analyses of genetic relationships among breeding materials and prediction of hybrid performance. Proc. of the First Int. Crop Sci. Cong.

    Google Scholar 

  • ———. 1999. Genetic diversity and heterosis, 99–118. In: JG Coors and S. Pandey, editors, The genetics and exploitation of heterosis in crops. ASA. CSSA, and SSSA, Madison.

    Google Scholar 

  • Melchinger, A.E., M. Lee, K.R. Lamkey, A.R. Hallauer, and W.L. Woodman. 1990. Genetic diversity from restriction fragment length polymorphisms and heterosis for two diallel sets of maize inbreds. Theoretical and Applied Genetics 80: 488–496.

    Article  CAS  PubMed  Google Scholar 

  • Melchinger, A.E., M.M. Messmer, M. Lee, W.L. Woodman, and K.R. Lamkey. 1991. Diversity and relationships among US maize inbreds revealed by restriction fragment length polymorphisms. Crop Science 31: 669–678.

    Article  Google Scholar 

  • Menkir, A., V.O. Adetimirin, C.G. Yallou, and M. Gedil. 2010. Relationship of genetic diversity of inbred lines with different reactions to Striga hermonthica (Del.) Benth and the performance of their crosses. Crop Science 50: 602–611.

    Article  Google Scholar 

  • Messmer, M.M., A.E. Melchinger, J. Boppenmaier, and E. Brunklaus-Jung. 1992. Relationships among early European maize inbreds. I: genetic diversity among flint and dent lines revealed by RFLPs. Crop Science 32: 1301–1309.

    Article  CAS  Google Scholar 

  • Messmer, M.M., A.E. Melchinger, R. Herrmann, and J. Boppenmaier. 1993. Relationships among early European maize inbreds: II. Comparison of pedigree and RFLP data. Crop Sci. 33: 944–950.

    Google Scholar 

  • Miranda Filho, J.B. 1999. Inbreeding depression and heterosis. In Genetics and exploitation of heterosis in crops, ed. J.G. Coors and S. Pandy, 69–80. Madison: American Society Agronomy.

    Google Scholar 

  • Moll, R.H., J.H. Lonnquist, J.V. Fortuna, and E.C. Johnson. 1965. The relation of heterosis and genetic divergence in maize. Genetics 52: 139–144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oyekunle, M., and B. Badu-Apraku. 2013. Hybrid Performance and Inbred-hybrid Relationship of Early Maturing Tropical Maize under Drought and Well-watered Conditions. Cereal Research Communications. doi:10.1556/CRC.2013.0052.

  • Paterniani, E., and J.H. Lonnquist. 1963. Heterosis in interracial crosses of maize (Zea mays L.). Crop Science 3: 504–507.

    Article  Google Scholar 

  • Pejic, I., P. Ajmone-Marsan, M. Morgante, V. Kozumplick, P. Castiglion, G. Taramino, and M. Motto. 1998. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics 97: 1248–1255.

    Article  CAS  Google Scholar 

  • Powell, W., G.C. Machray, and J. Provan. 1996. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1: 215–222.

    Article  Google Scholar 

  • Prasads, K., and T.P. Sikh. 1986. Heterosis in relation to genetic divergence in maize (Zea mays L.). Euphytica 35: 919–924.

    Article  Google Scholar 

  • Reif, J.C., A.E. Melchinger, X.C. Xia, M.L. Warburton, S.A. Hoisington, S.K. Vasal, D. Beck, M. Bohn, and M. Frisch. 2003a. Use of SSRs for establishing heterotic groups in subtropical maize. Theoretical and Applied Genetics 107: 947–957.

    Article  CAS  PubMed  Google Scholar 

  • Reif, J.C., A.E. Melchinger, X.C. Xia, M.L. Warburton, S.A. Hoisington, S.K. Vasal, G. Srinivasan, M. Bohn, and M. Frisch. 2003b. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science 43: 1275–1282.

    Article  Google Scholar 

  • SAS Institute Inc. 2011. Base SAS_ 9.3 Procedures Guide. Cary: SAS Institute Inc..

    Google Scholar 

  • Schug, M.D., K.A. Wetterstrand, M.S. Gaudette, R.H. Lim, C.M. Hutter, and C.F. Aquadro. 1998. The distribution and frequency of microsatellite loci in Drosophila melanogaster. Molecular Ecology 7: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Semagn, K., C. Magorokosho, B.S. Vivek, D. Makumbi, Y. Beyene, S. Mugo, B.M. Prasanna, and M.L. Warburton. 2012. Molecular characterization of diverse CIMMYT maize inbred lines from eastern and southern Africa using single nucleotide polymorphic markers. Genomics 13: 113–123.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senior, M.L., and M. Heun. 1993. Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36: 884–889.

    Article  CAS  PubMed  Google Scholar 

  • Senior, M.L., E.C.L. Chin, M. Lee, and J.S.C. Smith. 1996. Simple sequence repeat markers developed from maize sequences found in the genbank database: map construction. Crop Science 36: 1676–1683.

    Article  CAS  Google Scholar 

  • Senior, M.L., J.P. Murphy, M.M. Goodman, and C.W. Stuber. 1998. Utility of SSRs for determining genetic similarities and relationships in maize using an agarose gel system. Crop Science 38: 1088–1098.

    Article  Google Scholar 

  • Shieh, G.J., and F.S. Thseng. 2006. Genetic diversity of Tainan white maize inbred lines and prediction of single cross hybrid performance using RAPD markers. Euphytica 124: 307–313. doi:10.1023/A:1015753820623.

    Article  Google Scholar 

  • Singh, B.B. 2005. Cowpea [Vigna unguiculata (L.) Walp]. In Genetic resources, chromosome engineering and crop improvement, ed. R.J. Singh and P.P. Jauhar, vol. 1, 117–162. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Singh, S., R. Nodari, and P. Gepts. 1991. Genetic diversity in cultivated bean germplasm: I. Allozymes, Journal of Heredity 76: 447–450.

    Google Scholar 

  • Sinha, S.K., and R. Khanna-Chopra. 1975. Physiological, biochemical and genetic basis of heterosis. Advances in Agronomy 27: 123–170.

    Article  Google Scholar 

  • Smith, J.S.C. 1984. Genetic variability within U.S. hybrid maize: Multi-variate analysis of isozyme data. Crop Science 24: 1041–1046.

    Article  CAS  Google Scholar 

  • Smith, J.S.C., and O.S. Smith. 1992. Fingerprinting crop varieties. Advances in Agronomy 47: 85–140.

    Article  CAS  Google Scholar 

  • Smith, O.S., J.S.C. Smith, S.L. Bowen, R.A. Tenborg, and S.J. Wall. 1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs. Theoretical and Applied Genetics 80: 833–840.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.C., E.C.L. Chen, H. Shu, O.N. Smith, S.J. Wall, and M.L. Senior. 1997. An evaluation of utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theoretical and Applied Genetics 95: 163–173.

    Article  CAS  Google Scholar 

  • Stuber, C.W. 1994. Heterosis in plant breeding. Plant Breed. Rev. Crop Sci 37: 416–423. 12:227–251.

    Google Scholar 

  • Tanya, P., P. Srinives, T. Toojinda, A. Vanavichit, B.K. Ha, J.S. Bae, J.K. Moon, and S.H. Lee. 2001. Evaluation of genetic diversity among soybean genotypes using SSR and SNP. Korean J Crop Sci 46: 334–340.

    Google Scholar 

  • Taramino, G., and S. Tingey. 1996. Simple sequence repeats for germplasm analysis and mapping in maize. Genome 39: 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.A., R.L. Nelson, and L.O. Vodkin. 1998. Identification of diverse soybean germplasm using RAPD markers. Crop Science 38: 1348–1355.

    Article  Google Scholar 

  • Tollenaar, M., and J. Wu. 1999. Yield improvement in temperate maize is attributable to greater stress tolerance. Crop Sci. 39: 1597–1604.

    Article  Google Scholar 

  • Tollenaar, M., A. Ahmadzadeh, and E.A. Lee. 2004. Physiological basis of heterosis for grain yield in maize. Crop Science 44: 2086–2094.

    Article  Google Scholar 

  • Troyer, A.F. 1990. A retrospective view of corn genetic resources. The Journal of Heredity 81: 17–24.

    Article  Google Scholar 

  • Van Oosterom, E., R. Jayachandran, and F.R. Bidinger. 1996. Diallel analysis of the stay-green trait and its components in sorghum. Crop Science 36: 540–555.

    Google Scholar 

  • Vasal, S.K., G. Srinivasan, G.C. Han, and C.F. Gonzales. 1992. Heterotic patterns of eighty-eight white subtropical CIMMYT maize lines. Maydica 37: 319–327.

    Google Scholar 

  • Vroh Bi, I., M.D. McMullen, H.S. Villeda, S. Schroeder, J. Gardiner, M. Polacco, C. Soderlund, R. Wing, Z. Fang, and E.H. Coe. 2006. Single nucleotide polymorphisms and insertion-deletions for genetic markers and anchoring the maize fingerprint contig physical map. Crop Science 46: 12–21. doi:10.2135/cropsci2004.0706.

    Article  Google Scholar 

  • Warburton, M., X.C. Xia, J. Crossa, J. Franco, A.E. Melchinger, M. Frisch, M. Bohn, and D. Hoisington. 2002. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop Science 42: 1832–1840.

    Article  Google Scholar 

  • Weber, D. 1990. The end of the otter and of otter reintroduction plans in Switzerland. IUCN Otter Spec. Group Bull. 5: 45.

    Google Scholar 

  • Weber, J.L., and P.E. May. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics 44: 388–396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weising, K., J. Schell, and G. Kahl. 1998. Foreign genes in plants: transfer, structure, expression and applications. Annual Review of Genetics 22: 421–478.

    Article  Google Scholar 

  • Westman, A.L., and S. Kresovich. 1997. Use of molecular marker techniques for description of plant genetic variation. In Plant genetic resources. Conservation and use, ed. J.A. Callow, B.V. Ford-Lloyd, and H.J. Newbury, 9–48. Wallingford, UK: CAB Int.

    Google Scholar 

  • Xia, X.C., J.C. Reif, D.A. Hoisington, A.E. Melchinger, M. Frisch, and M.L. Warburton. 2004. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers. Crop Science 44: 2230–2237. doi:10.2135/cropsci2004.2230.

    Article  Google Scholar 

  • Xia, X.C., J.C. Reif, A.E. Melchinger, M. Frisch, D.A. Hoisington, D. Beck, K. Pixley, and M.L. Warburton. 2005. Genetic diversity among CIMMYT maize inbred lines investigated with SSR markers: I. Subtropical, tropical midlatitude, and highland maize inbred lines and their relationships with elite US and European maize. Crop Science 45: 2573–2582.

    Article  CAS  Google Scholar 

  • Xu, X., H. Lin, and Z. Fu. 2004. Probe into the method of regional ecological risk assessment – a case study of wetland in the Yellow River delta in China. Journal of Environmental Management 70: 253–262.

    Article  PubMed  Google Scholar 

  • Yang, W.P., A.C. de Oliveira, I. Godwin, K. Schertz, and J.L. Bennetzen. 1996. Comparison of DNA marker technologies in characterizing plant genome diversity: Variability in Chinese sorghums. Crop Sci 36: 1669–1676.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badu-Apraku, B., Fakorede, M.A.B. (2017). Genetic Diversity, Heterotic Grouping, and Testers in Hybrid Maize Production. In: Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-64852-1_7

Download citation

Publish with us

Policies and ethics