Inbred and Hybrid Maize Development: Experiences in Sub-Saharan Africa



Among crops with perfect flowers, maize is unique for hybrid production because of the separation of the staminate and pistillate inflorescences on the same plant, thus making selfing and crossing easier. Although open-pollinated varieties are more popular among farmers in West and Central Africa, there is a growing demand for hybrids to take advantage of heterosis. There are different types of hybrid and different methods for developing inbred lines to produce them. IITA and CIMMYT, in collaboration with national programs and seed companies, work on hybrids adapted to the different agroecologies of SSA. The pedigree method is the most common approach for developing inbred lines in SSA, although backcrossing and elite x elite crosses or recycling of inbred lines have also been extensively utilized in the early and extra-early maize program. The doubled haploid (DH) technology is presently being used in the CIMMYT Maize Program for the development of inbreds at the DH facility established in Kenya with funding from Bill and Melinda Gates Foundation.


  1. Allard, R.W. 1960. Principles of plant breeding. New York: Wiley.Google Scholar
  2. Badu-Apraku, B., and A.F. Lum. 2007. Agronomic performance of Striga resistant early maturing maize varieties and inbred lines in the savannas of West and Central Africa. Crop Science 47: 737–750.CrossRefGoogle Scholar
  3. Badu-Apraku, B., A. Menkir, and J.G. Kling. 2006a. Registration of 16 Striga resistant early maturing tropical maize inbred lines. Crop Science 46: 1410–1411.CrossRefGoogle Scholar
  4. Badu-Apraku, B., A. Menkir, and M.A.B. Fakorede. 2006b. Registration of 16 extra-early maturing Striga resistant tropical maize inbred lines. Crop Science 46: 1400–1401.CrossRefGoogle Scholar
  5. Badu-Apraku, B., A. Menkir, M.A.B. Fakorede, A.F. Lum, and K. Obeng-Antwi. 2006c. Multivariate analyses of the genetic diversity of forty-seven Striga resistant tropical early maturing maize inbred lines. Maydica 51: 551–559.Google Scholar
  6. Chase, S.S. 1964. Parthenogenesis. Maize Genetics Cooperation News Letter 38: 46.Google Scholar
  7. Deimling, S., F. Röber, and H.H. Geiger. 1997. Methodik und genetik der in vivo-haploideninduktion bei mais. Vortr Pflanzenzüchtg 38: 203–224.Google Scholar
  8. Eder, J., and S.T. Chalyk. 2002. In vivo haploid induction in maize. Theor Appl Genet104: 703–708.Google Scholar
  9. Fakorede, M.A.B. and S.O. Ajala. 1986. Combining ability of maize inbreds at two generations of inbreeding. Presented before Division C-1 of the American Society of Agronomy at the 78th Annual Meeting, New Orleans, 30 Nov–5 Dec, Agronomy Abstracts 1986.Google Scholar
  10. Fakorede M.A.B., A. Ajani, T. Fatunla, and K. Badaru. 1978. Efficient inter-institutional cooperation for accelerating hybrid maize production in Nigeria. Pages 48-53. In: O.A Ojome, J.M. Fajemisin and S.U. Reminson, editors, Prospects of hybrid maize production and utilization in Nigeria. NCRI, Ibadan.Google Scholar
  11. Fakorede, M.A.B., J.M. Fajemisin, S.K. Kim, and J.E. Iken. 1993. Maize improvement in Nigeria-past, present and future. In Maize improvement, production, and utilization in Nigeria, ed. M.A.B. Fakorede, C.O. Alofe, and S.K. Kim, 15–39. Ibadan: Maize Association of Nigeria.Google Scholar
  12. Fakorede, M.A.B., B. Badu-Apraku, O. Coulibaly, and J.M. Fajemisin. 2001. Maize research and development priorities in sub-Saharan Africa in the next millennium. In: Impact, challenges, and prospects of maize research and development in West and Central Africa, ed. B. Badu-Apraku, M.A.B. Fakorede, M. Ouedraogo, and R.J. Carsky, 31–58. Proceedings of a Regional Maize Workshop, 4–7 May 1999, IITA, Cotonou.Google Scholar
  13. Gayen, P., J.K. Madan, and R. Kumar. 1994. Chromosome doubling in haploids through colchicine. Maize Genetics Cooperation Newsletter 68: 65.Google Scholar
  14. Geiger, H.H. 2009. Doubled Haploids. p. 641–657. In: Bennetzen JL, Hake S (eds.) Maize Handbook - Volume II: Genetics and Genomics, Springer Science and Business Media, New York. Google Scholar
  15. Geiger, H.H., and G.A. Gordillo. 2009. Doubled haploids in hybrid maize breeding. Maydica 54: 485–499.Google Scholar
  16. Gordillo, G.A., and H.H. Geiger. 2008. Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Science 48: 911–922.CrossRefGoogle Scholar
  17. Hallauer, A.R., and J.B. Miranda. 1988. Quantitative genetics in maize breeding. Ames: Iowa State University Press.Google Scholar
  18. Hallauer, A.R., and J.H. Sears. 1973. Changes in quantitative traits with inbreeding in a synthetic variety of maize. Crop Science 13: 327–330.CrossRefGoogle Scholar
  19. Hallauer, A.R., M.J. Carena, and J.B. Miranda. 2010. Quantitative genetics in maize breeding. New York: Springer Science + Business Media, LLC.Google Scholar
  20. Jenkins, M.T. 1934. Methods of estimating the performance of double crosses in corn. Journal of the American Society of Agronomy 26: 199–204.CrossRefGoogle Scholar
  21. Kim, S.K. 1997. Achievements, challenges and future direction of hybrid maize research and production in West and Central Africa. In Contributing to food self-sufficiency: Maize research and development in West and Central Africa, ed. B. Badu-Apraku, M.O. Akoroda, .Ouedraogo, and F.M. Quin, 42–82. Proceedings of a Regional Maize Workshop, 29 May−2 June 1995, Cotonou.Google Scholar
  22. Kim, K.S., G. Rhee, and E.R. Stadtman. 1985. Non-enzymatic cleavage of proteins by reactive oxygen species generated by dithiothreitol and iron. The Journal of Biological Chemistry 260: 15394–15397.PubMedGoogle Scholar
  23. Kim, S.K., J.M. Fajemisin, M.A.B. Fakorede and J. E. Iken. 1993. Maize improvement in Nigeria-Hybrid performance in the savanna zone. Pp 41-46 in M.A.B. Fakorede, C.O. Alofe, and S.K. Kim (eds.) Maize improvement production and utilization in Nigeria. Maize Association of Nigeria, Rice/Maize Center, Moor Plantation, Ibadan.Google Scholar
  24. Kim, W., M. Yeadon, A.E. Botchkarev, S.N. Mohammed, J.M. Gibson, and H. Morkoç. 1997. Surface roughness of nitrided (0001) Al2O3 and AlN epilayers grown on (0001) Al2O3 by reactive molecular beam epitaxy. Journal of Vacuum Science and Technology B 15 (4): 921–927.CrossRefGoogle Scholar
  25. Kling, J.G., J.M. Fajemisin, B. Badu-Apraku, A. Diallo, A. Menkir, and A. Melake-Berhan. 2000. Striga resistance breeding in maize. In Breeding for Striga resistance in cereals, ed. B.I.G. Haussmann, D.E. Hess, M.L. Koyama, L. Grivet, H.F.W. Rattunde, and H.H. Geiger, 103–118. Margraf Verlag: Weikersheim.Google Scholar
  26. Röber, F.K., G.A. Gordillo, and H.H. Geiger. 2005. In vivo haploid induction in maize —performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50: 275–283.Google Scholar
  27. Shatskaya, O.A., E.R. Zabirova, and V.S. Shcherbac. 1994. Mass induction of material haploids in corn. Maize Genetics Cooperation Newsletter 68: 51.Google Scholar
  28. Wellhausen, E.J. 1977. L’agricoltura in Messico. Le Scienze, X 104: 96–109.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.International Institute of Tropical AgricultureIbadanNigeria
  2. 2.Obafemi Awolowo UniversityIle-IfeNigeria

Personalised recommendations