Skip to main content

Abstract

Drought, Striga, and low-nitrogen, along with several other abiotic and biotic stresses occur simultaneously in the field in sub-Saharan Africa, and the combined effect is drastic reduction in grain yield. Consequently, the current ultimate goal of maize improvement programs in SSA is to breed for biotic and abiotic stress tolerance and high grain yield under the three specific stress factors presently plaguing maize production in SSA. Population improvement and inbred–hybrid methods have been employed with reliable artificial field infestation and screening methods to enhance resistance to the stresses in the breeding materials. The products of the IITA Maize Improvement Program include several source populations, inbred lines, high-yielding OPVs, and hybrids of varying grain types, colors, and maturities with good levels of resistance/tolerance to two or more of the endemic stresses. Early and extra-early maize populations have been improved under controlled drought stress using backcrossing and S1 recurrent selection. This has resulted in new generations of productive open-pollinated and hybrid varieties that combine enhanced levels of drought tolerance with good levels of resistance to Striga and tolerance to low N. The populations and several of the derived varieties have shown superior performance under both Striga-infested and non-infested conditions and have proved to be invaluable sources of Striga-resistant synthetics and inbred lines. Also, several open-pollinated normal endosperm white and yellow varieties, QPM, and pro-vitamin A varieties, hybrids, and inbred lines have been developed in the breeding programs with several of these released for commercialization in the sub-region to contribute to food security and increased incomes in the sub-region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogu, I.C., B. Badu-Apraku, V.O. Adetimirin, I. Vroh-Bi, M. Oyekunle, and R.O. Akinwale. 2012. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments. The Journal of Agricultural Science 151: 519–537.

    Article  Google Scholar 

  • Akinwale, R.O., B. Badu-Apraku, M.A.B. Fakorede, and I. Vroh-Bi. 2014. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga-infested and Striga-free environments and the use of SSR markers for genotyping. Field Crops Research 156: 48–62.

    Article  Google Scholar 

  • Alene, A., A. Menkir, S. Ajala, B. Badu-Apraku, A. Olanrewaju, V. Manyong, and A. Ndiaye. 2009. The economic and poverty impacts of maize research in West and Central Africa. Agricultural Economics 40: 535–550. https://doi.org/10.1111/j.1574-0862.2009.00396.x.

    Article  Google Scholar 

  • Ali, F., A.S. Irfan, H. Rahman, N. Mohammad, M.Y.K. Durrishahwar, U. Ihteram, and Y. Jianbing. 2012. Heterosis for yield and agronomic attributes in diverse maize germplasm. Australian Journal of Crop Science 6 (3): 455–462.

    Google Scholar 

  • Amegbor, I.K., B. Badu-Apraku, and B. Annor. 2017. Combining ability and heterotic patterns of extra-early maturing white maize inbreds with genes from Zea diploperennis under multiple environments. Euphytica 213: 1–16. https://doi.org/10.1007/s10681-016-1823-y.

    Article  CAS  Google Scholar 

  • Badu-Apraku, B., and M.A.B. Fakorede. 2001. Progress in breeding for Striga hermonthica resistant early and extra-early maize varieties. In Impact, challenges and prospects of maize research and development in West and Central Africa, Proceeding of Regional Maize Workshop, 4–7 May 1999, ed. B. Badu-Apraku, M.A.B. Fakorede, M. Ouedraogo, and M. Quin, 147–162. Benin Republic: WECAMAN/IITA-Cotonou.

    Google Scholar 

  • Badu-Apraku, B., and A.F. Lum. 2007. Agronomic performance of Striga resistant early-maturing maize varieties and inbred lines in the savannas of West and Central Africa. Crop Science 47: 1–13.

    Article  Google Scholar 

  • Badu-Apraku, B., and M. Oyekunle. 2012. Genetic analysis of grain yield and other traits of extra-early yellow maize inbreds and hybrid performance under contrasting environments. Field Crops Research 129: 99–110.

    Article  Google Scholar 

  • Badu-Apraku, B., A.O. Diallo, J.M. Fajemisin, and M.A.B. Fakorede. 1997. Progress in breeding for drought tolerance in tropical early maturing maize for the semi-arid zone of West and Central Africa. In Developing drought and low-N tolerant maize: Proceedings of a symposium. 25–29 Mar, ed. G.O. Edemeades et al., vol. 1996, 469–474. Mexico: CIMMYT, El Batan.

    Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, M. Ouedraogo, and R.J. Carsky. 2001. Impact, challenges, and prospects of maize research and development in West and Central Africa. Proceeding of Regional Maize Workshop, 4–7 May 1999, IITA-Cotonou, Benin Republic. Ibadan: WECAMAN/IITA.

    Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, A. Menkir, A.Y. Kamara, L. Akanvou, and Y. Chabi. 2004. Response of early maturing maize to multiple stresses in the Guinea savanna of West and Central Africa. Journal of Genetics and Breeding 58: 119–130.

    Google Scholar 

  • Badu-Apraku, B., A. Menkir, M.A.B. Fakorede, A.F. Lum, and K. Obeng-Antwi. 2006. Multivariate analyses of the genetic diversity of forty-seven Striga resistance tropical early-maturing maize inbred lines. Maydica 51: 551–559.

    Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, and A.F. Lum. 2007. Evaluation of experimental varieties from recurrent selection for Striga resistance in two extra-early maize populations in the savannas of West and Central Africa. Experimental Agriculture 43: 183–200.

    Article  Google Scholar 

  • Badu-Apraku, B., A.F. Lum, M.A.B. Fakorede, A. Menkir, Y. Chabi, C. The, M. Abdulai, S. Jacob, and S. Agbaje. 2008. Performance of cultivars derived from recurrent selection for grain yield and Striga resistance in early maize. Crop Science 48: 99–112.

    Article  Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, A.F. Lum, and R.O. Akinwale. 2009. Improvement of yield and other traits of extra-early maize under stress and nonstress environments. Agronomy Journal 101: 381–389.

    Article  CAS  Google Scholar 

  • Badu-Apraku, B., A. Menkir, S.O. Ajala, R.O. Akinwale, M. Oyekunle, and K. Obeng-Antwi. 2010a. Performance of tropical early-maturing maize cultivars in multiple stress environments. Canadian Journal of Plant Science 90: 1–22.

    Article  Google Scholar 

  • ———. 2010b. Performance of tropical early-maturing maize cultivars in multiple stress environments. Canadian Journal of Plant Science 90: 831–852.

    Article  Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, and R.O. Akinwale. 2011. Selection of extra-early maize inbreds under low N and drought at flowering and grain-filling for hybrid production, Maydica 561721. Open Access.

    Google Scholar 

  • Badu-Apraku, B., R.O. Akinwale, J. Franco, and M. Oyekunle. 2012. Assessment of reliability of secondary traits in selecting for improved grain yield in drought and low-nitrogen environments. Crop Science 52: 2050–2066.

    Article  Google Scholar 

  • Badu-Apraku, B., M. Oyekunle, and R.O. Akinwale. 2013a. Breakthroughs in maize breeding. Research Developmental Review 10: 4–9.

    Google Scholar 

  • Badu-Apraku, B., M. Oyekunle, R.O. Akinwale, and M. Aderounmu. 2013b. Combining ability and genetic diversity of extra-early white maize inbreds under stress and nonstress environments. Crop Science 53: 1–18.

    Google Scholar 

  • Badu-Apraku, B., M. Fakorede, and M. Oyekunle. 2014. Agronomic traits associated with genetic gains in maize yield during three breeding eras in West Africa. Maydica 59 (1): 49–57.

    Google Scholar 

  • Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, and R.O. Akinwale. 2015a. Genetic gains in grain yield under nitrogen stress following three decades of breeding for drought tolerance and Striga resistance in early maturing maize. Journal of Agriculture Science (Cambridge). doi:10.1017/S0021859615000593.

  • Badu-Apraku, B., M.A.B. Fakorede, M. Oyekunle, G.C. Yallou, K. Obeng-Antwi, A. Haruna, et al. 2015b. Gains in grain yield of early maize cultivars developed during three breeding eras under multiple environments. Crop Science 55: 527–539. doi:10.2135/ cropsci2013.11.0783.

    Article  Google Scholar 

  • Badu-Apraku, B., C.G. Yallou, A. Haruna, A.O. Talabi, I.C. Akaogu, B. Annor, and A. Adeoti. 2016. Genetic improvement of extra-early maize cultivars for grain yield and Striga resistance during three breeding eras. Crop Science. https://doi.org/10.2135/cropsci2016.02.0089.

  • Bänziger, M., G.O. Edmeades, and H.R. Lafitte. 1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Science 39: 1035–1040.

    Article  Google Scholar 

  • Campos, H., M. Cooper, G.O. Edmeades, C. Löffler, J.R. Schussler, and M. Ibañez. 2006. Changes in drought tolerance in maize associated with fifty years of breeding for yield in the U.S. corn belt. Maydica 51: 369–381.

    Google Scholar 

  • Castleberry, R.M., C.W. Crum, and C.F. Krull. 1984. Genetic yield improvement of U.S. maize cultivars under varying fertility and climatic environments. Crop Science 24: 33–36.

    Article  Google Scholar 

  • Cechin, I., and M.C. Press. 1993. The influence of nitrogen on growth and photosynthesis of sorghum infected with Striga hermonthica from different provenances. Weed Research 3: 289–298.

    Google Scholar 

  • Duvick, D.N. 2005. The contribution of breeding to yield advances in maize. In Advanced agronomy, ed. D.N. Sparks, vol. 86, 83–145. San Diego: Academic Press.

    Google Scholar 

  • Gethi, J.G., and M.E. Smith. 2004. Genetic responses of single crosses of maize to Striga hermonthica (Del.) Benth. and Striga asiatica (L.) Kuntze. Crop Science 44: 2068–2077.

    Article  Google Scholar 

  • IITA. 1992. Sustainable food production in sub-Saharan Africa. 1. IITA’s contribution. Ibadan: IITA.

    Google Scholar 

  • Kamara, A.Y., A. Menkir, M.A.B. Fakorede, S.O. Ajala, B. Badu- Apraku, and I. Kureh. 2004. Agronomic performance of maize cultivars representing three decades of breeding in the Guinea savannas of West and Central Africa. The Journal of Agricultural Science 142: 567–575. https://doi.org/10.1017/S0021859604004575.

    Article  Google Scholar 

  • Kamara, A.Y., S.U. Ewansiha, A. Menkir, and A.I. Tofa. 2012. Agronomic response of drought-tolerant and Striga-resistant maize cultivars to nitrogen fertilization in the Nigerian Guinea savannahs. Maydica 57: 114–120.

    Google Scholar 

  • Kim, S.K., and V.O. Adetimirin. 1997. Responses of tolerant and susceptible maize varieties to timing and rate of nitrogen under Striga hermonthica infestation. Agronomy Journal 89: 38–44.

    Article  Google Scholar 

  • Lane, J.A., D.V. Child, T.H.M. Moore, G.M. Arnold, and J.A. Bailey. 1997. Phenotypic characterization of resistance in Zea diploperennis to Striga hermonthica. Maydica 42: 45–51.

    Google Scholar 

  • Makumbi, D., J.F. Betrán, M. Bänziger, and J. Ribaut. 2011. Combining ability, heterosis and genetic diversity in tropical maize (Zea mays L.) under stress and non-stress conditions. Euphytica 180: 143–162.

    Article  Google Scholar 

  • O’Neill, P.M., J.F. Shanahan, J.S. Schepers, and B. Caldwell. 2004. Agronomic responses of corn hybrids from different eras to deficit and adequate levels of water and nitrogen. Agronomy Journal 96: 1660–1667. doi:10.2134/agronj2004.1660.

    Article  Google Scholar 

  • Parker, C., and C.R. Riches. 1993. Parasitic weeds of the world: Biology and control, 332. Wallingford: Cab Intl.

    Google Scholar 

  • Russell, W.A. 1984. Agronomic performance of maize cultivars representing different eras of breeding. Maydica 29: 375–390.

    Google Scholar 

  • Sangoi, L., M.A. Graceietti, C. Rampazzo, and P. Bianchetti. 2002. Response of Brazilian maize hybrids from different eras to changes in plant density. Field Crops Research 79: 39–51.

    Article  Google Scholar 

  • Specht, J.E., D.J. Hume, and S.V. Kumudini. 1999. Soybean yield potential: A genetic and physiological perspective. Crop Science 39: 1560–1570. https://doi.org/10.2135/cropsci1999.3961560x.

    Article  Google Scholar 

  • Tefera, H., A.Y. Kamara, B. Asafo-Adjei, and K.E. Dashiell. 2009. Improvements in grain and fodder yields of early maturing promiscuous soybean cultivars in the Guinea savannas of Nigeria. Crop Science 49: 2037–2042. https://doi.org/10.2135/cropsci2009.02.0081.

    Article  Google Scholar 

  • Tollenaar, M. 1989. Genetic improvement in grain yield of commercial maize hybrids grown in Ontario from 1959 to 1988. Crop Science 29: 1365–1371.

    Article  Google Scholar 

  • Tollenaar, M., A. Aguilera, and S.P. Nissanka. 1997. Grain yield is reduced more by weed interference in an old than in a new maize hybrid. Agronomy Journal 89 (2): 239–246.

    Article  Google Scholar 

  • Voldeng, H.D., E.R. Cober, D.J. Hume, C. Gillard, and M.J. Morrison. 1997. Fifty-eight years of genetic improvement of short season soybean cultivars in Canada. Crop Science 37: 428–431. https://doi.org/10.2135/cropsci1997.0011183X003700020020x.

    Article  Google Scholar 

  • Wang, X., J. Chang, G. Qin, S. Zhang, X. Cheng, and C. Li. 2011. Analysis on yield components of elite maize variety Xundan 20 with super high yield potential. African Journal of Agricultural Research 6 (24): 5490–5495.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Badu-Apraku, B., Fakorede, M.A.B. (2017). Genetic Enhancement for Multiple Stress Tolerance. In: Advances in Genetic Enhancement of Early and Extra-Early Maize for Sub-Saharan Africa. Springer, Cham. https://doi.org/10.1007/978-3-319-64852-1_16

Download citation

Publish with us

Policies and ethics