Skip to main content

Advanced Laser Facilities and Scientific Applications

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XIII

Part of the book series: Springer Series in Chemical Physics ((PUILS))

  • 748 Accesses

Abstract

This contribution reviews the different approaches for extreme laser facilities and their potential scientific and technical applications. In short, we can address two obvious questions, what extreme lasers can we build? and what are them good for?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. B. Bussiere, Bulk laser-induced damage threshold of titanium-doped sapphire crystals. Appl. Opt. 51, 7826 (2012)

    Google Scholar 

  2. J.F. Holzrichter et al., High power pulsed lasers. J. Fusion Energy 2, 5 (1982)

    Article  ADS  Google Scholar 

  3. J.R. Klauder et al., The theory and design of chirp radars. Bell Syst. Tech. J. 39, 745 (1960)

    Article  Google Scholar 

  4. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun 55, 447 (1985)

    Article  ADS  Google Scholar 

  5. M. Pessot et al., 1000 times expansion/compression of optical pulses for chirped pulse amplification. Optics Commun 62, 419 (1987)

    Article  ADS  Google Scholar 

  6. P. Maine et al., Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J. Quantum Electron. 24, 398 (1988)

    Article  ADS  Google Scholar 

  7. E.B. Treacy, Compression of picosecond light pulses. IEEE J. Quantum Electron. 5, 454 (1969)

    Article  ADS  Google Scholar 

  8. O.E. Martinez et al., Negative group-velocity dispersion using refraction. J Optical Soc Am A 1, 1003 (1984)

    Article  ADS  Google Scholar 

  9. O.E. Martinez, Grating and prism compressors in the case of finite beam size. J Opt. Soc Am B 3, 929 (1986)

    Article  ADS  Google Scholar 

  10. G. Mourou et al., Ultrahigh-Intensity Lasers: Physics of the Extreme on a Tabletop. Phys. Today 51, 22 (1998)

    Article  Google Scholar 

  11. E.M. Campbell et al., Nova experimental facility. Review Scientific Instruments 57, 2101 (1986)

    Article  ADS  Google Scholar 

  12. http://www.eli-laser.eu

  13. I. Ahmad et al., Frontend light source for short-pulse pumped OPCPA system. Appl. Phys. B 97, 529 (2009)

    Article  ADS  Google Scholar 

  14. https://portail.polytechnique.edu/izest/en

  15. T. Ditmire, High-power lasers. Am. Sci. 98, 394 (2010)

    Google Scholar 

  16. W.B. Tiffany, R. Targ, J.D. Foster, Kilowatt CO2 Gas-Transport Laser. Appl. Phys. Lett. 15, 91 (1969)

    Article  ADS  Google Scholar 

  17. https://lasers.llnl.gov

  18. http://www-lmj.cea.fr

  19. http://petal.aquitaine.fr

  20. A. Casner et al., LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics. High Energy Density Phys. 17, 2 (2015)

    Article  ADS  Google Scholar 

  21. T.M. Jeong, J. Lee, Femtosecond petawatt laser. Ann. Phys. 526, 157 (2014)

    Article  Google Scholar 

  22. http://cilexsaclay.fr/

  23. Z. Major et al., Basic concepts and current status of the petawatt field synthesizer-a new approach to ultrahigh field generation. Rev. Laser Eng. 37, 431 (2009)

    Article  Google Scholar 

  24. G. Mourou et al., Single cycle thin film compressor opening the door to Zeptosecond-Exawatt physics. Eur. Phys. J. Spec. Top. 223, 1181 (2014)

    Article  Google Scholar 

  25. P.F. Moulton, Spectroscopic and laser characteristics of Ti:Al2O3. J. Opt. Soc. Am B 3, 125 (1986)

    Article  ADS  Google Scholar 

  26. M. Siebold, Yb: CaF2—a new old laser crystal. Appl. Phys. B 97, 327 (2009)

    Article  ADS  Google Scholar 

  27. L. Vigroux et al., High power solid-state optical amplification process and system, U.S. Patent No. 7,869,481. 11 Jan 2011

    Google Scholar 

  28. Y. Chu et al., High-energy large-aperture Ti: sapphire amplifier for 5 PW laser pulses. Opt. Lett. 40, 5011 (2015)

    Article  ADS  Google Scholar 

  29. M. Siebold et al., Terawatt diode-pumped Yb: CaF 2 laser. Opt. Lett. 33, 2770 (2008)

    Article  ADS  Google Scholar 

  30. E.R. Dobrovinskaya et al., Sapphire: material, manufacturing, applications (Springer, 2009)

    Google Scholar 

  31. C. Rödel et al., High repetition rate plasma mirror for temporal contrast enhancement of Terawatt femtosecond laser pulses by three orders of magnitude. Appl. Phys. B 103, 295 (2011)

    Article  ADS  Google Scholar 

  32. H. Nishimura et al., Energy transport and isochoric heating of a low-z, reduced-mass target irradiated with a high intensity laser pulse. Phys Plasmas 18, 022702 (2011)

    Article  ADS  Google Scholar 

  33. S.V. Bulanov et al., Relativistic laser-matter interaction and relativistic laboratory astrophysics. Eur. Phys. J. D 55, 483 (2009)

    Article  ADS  Google Scholar 

  34. S.V. Bulanov, V.S. Khoroshkov, Feasibility of using laser ion accelerators in proton therapy. Plasma Phys. Rep. 28, 453 (2002)

    Article  ADS  Google Scholar 

  35. C.-M. Ma et al., Development of a laser-driven proton accelerator for cancer therapy. Laser Phys. 16, 639 (2005)

    Article  ADS  Google Scholar 

  36. J. Fuchs et al., Laser-driven proton scaling laws and new paths towards energy increase, Nature Physics, 2, 48 (2206)

    Google Scholar 

  37. B. Hidding et al., Laser–plasma-accelerators. A novel, versatile tool for space radiation studies, Nuclear Instruments and Methods in Physics Research A 636, 31 (2011)

    Article  ADS  Google Scholar 

  38. P.C. Michael et al., Test of a conduction-cooled, prototype, superconducting magnet for a compact cyclotron. Appl. Supercond. IEEE Trans. 23, 4100304 (2013)

    Article  Google Scholar 

  39. P.B. Parks et al., Model of neutron-production rates from femtosecond-laser–cluster interactions. Phys. Rev. A 63, 063203 (2001)

    Article  ADS  Google Scholar 

  40. J.D. Lawson, Some criteria for a power producing thermonuclear reactor. Proc. Phys Soc. B 70, 6 (1957)

    Article  ADS  Google Scholar 

  41. G. Pretzler et al., Neutron production by 200 mJ ultrashort laser pulses. Phys. Rev. E 58, 1165 (1998)

    Google Scholar 

  42. T. Ditmire et al., Nuclear Fusion from explosions of femtosecond-laser heated deuterium cluster. Nature 398, 492 (1999)

    Article  ADS  Google Scholar 

  43. R. Alba et al., Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target. J. Phys: Conf. Ser. 420, 012162 (2012)

    Google Scholar 

  44. K.L. Lancaster et al., Characterization of 7Li (p, n) 7Be neutron yields from laser produced ion beams for fast neutron radiography. Phys. Plasmas 11, 3404 (2004)

    Article  ADS  Google Scholar 

  45. D.P. Higginson et al., Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions. Phys. Plasmas 18, 100703 (2011)

    Article  ADS  Google Scholar 

  46. M. Roth et al., Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  47. J. Magill et al., Laser transmutation of iodine-129. Appl. Phys. B 77, 387 (2003)

    Article  ADS  Google Scholar 

  48. K.W.D. Ledingham et al., Laser-driven photo-transmutation of 129I—a long-lived nuclear waste product. J. Phys. D Appl. Phys. 36, L79 (2003)

    Article  Google Scholar 

  49. S.M. Qaim et al., Evaluation of excitation functions of 100 Mo (p, d + pn) 99 Mo and 100 Mo (p, 2n) 99 m Tc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99 m Tc. Appl. Radiat. Isot. 85, 101 (2014)

    Article  Google Scholar 

  50. J. Kasparian, J.-P. Wolf, Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16, 466 (2008)

    Article  ADS  Google Scholar 

  51. F. Théberge et al., Tunable ultrashort laser pulses generated through filamentation in gases. Phys. Rev. Lett. 97, 023904 (2996)

    Article  Google Scholar 

  52. S.L. Chin, Femtosecond laser filamentation, vol. 55 (Springer, NY, 2010)

    Google Scholar 

  53. J. Ju et al., Laser-filamentation-induced condensation and snow formation in a cloud chamber. Opt. Lett. 37, 1214 (2012)

    Article  ADS  Google Scholar 

  54. L.M. Ball, The laser lightning rod system: thunderstorm domestication. Appl. Opt. 13, 2292 (1974)

    Article  ADS  Google Scholar 

  55. E. Cubukcu et al., Plasmonic laser antenna. Appl. Phys. Lett. 89, 093120 (2006)

    Article  ADS  Google Scholar 

  56. S.P.D. Mangles et al., Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  57. W.D. Kimura et al., Laser acceleration of relativistic electrons using the inverse Cherenkov effect. Phys. Rev. Lett. 74, 546 (1995)

    Article  ADS  Google Scholar 

  58. D. Umstadter, Relativistic laser-plasma interactions. J. Phys. D Appl. Phys. 36, R151 (2003)

    Article  ADS  Google Scholar 

  59. V. Malka, Laser Plasma accelerators. Phys. Plasmas 19, 055501 (2012)

    Article  ADS  Google Scholar 

  60. W.P. Leemans et al., GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2, 696 (2006)

    Article  Google Scholar 

  61. E. Esarey et al., Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  62. J. Breuer, P. Hommelhoff, Dielectric laser acceleration of 28 keV electrons with the inverse Smith-Purcell effect. Nucl. Instrum. Methods Phys. Res. A 740, 114 (2014)

    Article  ADS  Google Scholar 

  63. M. Chen et al., Electron injection and emittance control by transverse colliding pulses in a laser-plasma accelerator. Phys. Rev. Spec. Top.—Accel. Beams 17, 051303 (2014)

    Google Scholar 

  64. M. Mo et al., Characterization of laser wakefield generated betatron X-ray radiation using grazing incidence mirror reflection. Eur. Phys. J. D 68, 1 (2014)

    Article  ADS  Google Scholar 

  65. Cl. R. Phipps et al., Laser-ablation-powered mini-thruster, in International Symposium on High-Power Laser Ablation (International Society for Optics and Photonics, 2002), p. 833

    Google Scholar 

  66. J. Aron, The $100 million plan to get to Alpha Centauri. New Sci. 230, 9 (2016)

    Google Scholar 

  67. A. Gopal et al., MegaGauss magnetic field generation by ultra-short pulses at relativistic intensities. Plasma Phys. Control. Fus. 55, 035002 (2013)

    Article  ADS  Google Scholar 

  68. J. Schwinger, Gauge invariance and mass II. Phys. Rev. 128, 2425 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. A.M. Fedotov et al., Limitations on the attainable intensity of high power lasers. Phys. Rev. Lett. 105, 080402 (2010)

    Article  ADS  Google Scholar 

  70. D. Tommasini et al., Detecting photon-photon scattering in vacuum at exawatt lasers. Phys. Rev. A 77, 042101 (2008)

    Article  ADS  Google Scholar 

  71. C. Bamber et al., The main features of the generation of a pair of particles by laser fields have been already demonstrated in the SLAC-144 experiment, studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. 60, 092004 (1999)

    Google Scholar 

  72. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  73. P.R. Bolton, K. Parodi, J. Schreiber (eds.), Applications of Laser-driven Particle Acceleration (CRC Press, 2016) in press

    Google Scholar 

  74. http://www.clpu.es

Download references

Acknowledgements

Author acknowledges the Spanish Ministry of Economy and Competitiveness (Projects No. FIS2013-47741-R, and FIS2016-81056-R AEI/FEDER UE), the Junta de Castilla and Leon Regional Government (UIC-167, project CLP087U16), and LaserLab Europe IV Grant Agreement No. 654148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Roso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roso, L. (2017). Advanced Laser Facilities and Scientific Applications. In: Yamanouchi, K., Hill III, W., Paulus, G. (eds) Progress in Ultrafast Intense Laser Science XIII. Springer Series in Chemical Physics(). Springer, Cham. https://doi.org/10.1007/978-3-319-64840-8_9

Download citation

Publish with us

Policies and ethics