Skip to main content

Tracing Nonlinear Cluster Dynamics Induced by Intense XUV, NIR and MIR Laser Pulses

  • Chapter
  • First Online:
  • 762 Accesses

Part of the book series: Springer Series in Chemical Physics ((PUILS))

Abstract

The ionization of nanoscale clusters by intense laser pulses is fundamentally different from the ionization of atoms or small molecules. Laser energy is efficiently absorbed by clusters, transforming them into nanoplasmas within femtoseconds. An overview of recent experiments is presented, in which the dynamics of clusters induced by intense laser pulses were traced on femtosecond to nanosecond timescales. The development of an intense high-harmonic generation (HHG) source in combination with pump-probe techniques using laser pulses from the extreme-ultraviolet (XUV) to the terahertz (THz) regime have made it possible to trace and control nonlinear cluster ionization and relaxation directly in the time domain. Very efficient population of Rydberg states by electron-ion recombination was found during the cluster expansion. We have discovered that these Rydberg atoms and ions can relax via a so far unobserved correlated electronic decay (CED) mechanism, during which one electron relaxes from a higher to a lower atomic bound state and transfers its excess energy to a neighboring electron that escapes from the cluster, leaving distinct signatures in the electron kinetic energy spectrum.

This is a preview of subscription content, log in via an institution.

References

  1. U. Saalmann, C. Siedschlag, J.M. Rost, J. Phys. B 39, R39 (2006)

    Google Scholar 

  2. T. Fennel, K.H. Meiwes-Broer, J. Tiggesbäumker, P.G. Reinhard, P.M. Dinh, E. Suraud, Rev. Mod. Phys. 82, 1793 (2010)

    Google Scholar 

  3. T. Ditmire, R.A. Smith, J.W.G. Tisch, M.H.R. Hutchinson, Phys. Rev. Lett. 78, 3121 (1997)

    Article  ADS  Google Scholar 

  4. Y.L. Shao, T. Ditmire, J.W.G. Tisch, E. Springate, J.P. Marangos, M.H.R. Hutchinson, Phys. Rev. Lett. 77, 3343 (1996)

    Article  ADS  Google Scholar 

  5. L.M. Chen, J.J. Park, K.H. Hong, J.L. Kim, J. Zhang, C.H. Nam, Phys. Rev. E 66, 025402(R) (2002)

    Google Scholar 

  6. V. Kumarappan, M. Krishnamurthy, D. Mathur, Phys. Rev. A 66, 033203 (2002)

    Article  ADS  Google Scholar 

  7. E. Springate, S.A. Aseyev, S. Zamith, M.J.J. Vrakking, Phys. Rev. A 68, 053201 (2003)

    Article  ADS  Google Scholar 

  8. L. Zhang et al., Appl. Phys. Lett. 100, 014104 (2012)

    Article  ADS  Google Scholar 

  9. T. Ditmire, J.W.G. Tisch, E. Springate, M.B. Mason, N. Hay, R.A. Smith, J. Marangos, M.H.R. Hutchinson, Nature 386, 54 (1997)

    Article  ADS  Google Scholar 

  10. Y. Fukuda et al., Phys. Rev. Lett. 103, 065002 (2009)

    Article  Google Scholar 

  11. R. Rajeev, T. Madhu Trivikram, K.P.M. Rishad, V. Narayanan, E. Krishnakumar, M. Krishnamurthy, Nat. Phys. 9, 185 (2013)

    Article  Google Scholar 

  12. T. Ditmire, J. Zweiback, V.P. Yanovsky, T.E. Cowan, G. Hays, K.B. Wharton, Nature 398, 489 (1999)

    Article  ADS  Google Scholar 

  13. A. McPherson, B. Thompson, A. Borisov, K. Boyer, C. Rhodes, Nature 370, 631 (1994)

    Article  ADS  Google Scholar 

  14. T. Ditmire, T. Donnelly, R.W. Falcone, M.D. Perry, Phys. Rev. Lett. 75, 3122 (1995)

    Article  ADS  Google Scholar 

  15. L.M. Chen et al., Sci. Rep. 3, 1912 (2013)

    Article  Google Scholar 

  16. H. Wabnitz et al., Nature 420, 482 (2002)

    Article  ADS  Google Scholar 

  17. H. Thomas et al., Phys. Rev. Lett. 108, 133401 (2012)

    Article  ADS  Google Scholar 

  18. C. Bostedt et al., Phys. Rev. Lett. 108, 093401 (2012)

    Article  ADS  Google Scholar 

  19. L. Gomez et al., Science 345, 906 (2014)

    Article  ADS  Google Scholar 

  20. I. Barke et al., Nat. Commun. 6, 6187 (2015)

    Article  Google Scholar 

  21. T. Gorkhover et al., Phys. Rev. Lett. 108, 245005 (2012)

    Article  ADS  Google Scholar 

  22. E.M. Snyder, S.A. Buzza, A.W. Castleman, Phys. Rev. Lett. 77, 3347 (1996)

    Article  ADS  Google Scholar 

  23. T. Ditmire, T. Donnelly, A.M. Rubenchik, R.W. Falcone, M.D. Perry, Phys. Rev. A 53, 3379 (1996)

    Article  ADS  Google Scholar 

  24. C. Bostedt et al., Phys. Rev. Lett. 100, 133401 (2008)

    Article  ADS  Google Scholar 

  25. C. Rose-Petruck, K.J. Schafer, K.R. Wilson, C.P.J. Barty, Phys. Rev. A 55, 1182 (1997)

    Article  ADS  Google Scholar 

  26. T. Laarmann, M. Rusek, H. Wabnitz, J. Schulz, A.R.B. de Castro, P. Gürtler, W. Laasch, T. Möller, Phys. Rev. Lett. 95 (2005)

    Google Scholar 

  27. J. Zweiback, T. Ditmire, M.D. Perry, Phys. Rev. A 59, R3166 (1999)

    Article  ADS  Google Scholar 

  28. L. Köller, M. Schumacher, J. Köhn, S. Teuber, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 82, 3783 (1999)

    Article  ADS  Google Scholar 

  29. E. Allaria et al., Nat. Photonics 6, 699 (2012)

    Article  ADS  Google Scholar 

  30. E. Takahashi, Y. Nabekawa, K. Midorikawa, Opt. Lett. 27, 1920 (2002)

    Article  ADS  Google Scholar 

  31. J.F. Hergott et al., Phys. Rev. A 66, 021801(R) (2002)

    Article  ADS  Google Scholar 

  32. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  33. E. Takahashi, P. Lan, O.D. Mücke, Y. Nabekawa, K. Midorikawa, Nat. Commun. 4, 2691 (2013)

    ADS  Google Scholar 

  34. B.F. Murphy, K. Hoffmann, A. Belolipetski, J. Keto, T. Ditmire, Phys. Rev. Lett. 101, 203401 (2008)

    Article  ADS  Google Scholar 

  35. B. Schütte, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 073003 (2014)

    Article  ADS  Google Scholar 

  36. B. Schütte, F. Campi, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 112, 253401 (2014)

    Article  ADS  Google Scholar 

  37. U. Frühling et al., Nat. Photonics 3, 523 (2009)

    Article  ADS  Google Scholar 

  38. B. Schütte, U. Frühling, M. Wieland, A. Azima, M. Drescher, Opt. Express 19, 18833 (2011)

    Article  ADS  Google Scholar 

  39. B. Schütte, S. Bauch, U. Frühling, M. Wieland, M. Gensch, E. Plönjes, T. Gaumnitz, A. Azima, M. Bonitz, M. Drescher, Phys. Rev. Lett. 108, 253003 (2012)

    Article  ADS  Google Scholar 

  40. B. Schütte, T. Oelze, J. Lahl, M.J.J. Vrakking, A. Rouzée, M. Krikunova, (in preparation)

    Google Scholar 

  41. C. Gnodtke, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 108, 175003 (2012)

    Article  ADS  Google Scholar 

  42. S. Namba, N. Hasegawa, M. Nishikino, T. Kawachi, M. Kishimoto, K. Sukegawa, M. Tanaka, Y. Ochi, K. Takiyama, K. Nagashima, Phys. Rev. Lett. 99, 043004 (2007)

    Article  ADS  Google Scholar 

  43. T. Döppner, J.P. Müller, A. Przystawik, S. Göde, J. Tiggesbäumker, K.H. Meiwes-Broer, C. Varin, L. Ramunno, T. Brabec, T. Fennel, Phys. Rev. Lett. 105, 053401 (2010)

    Article  ADS  Google Scholar 

  44. A. Mikaberidze, U. Saalmann, J.M. Rost, Phys. Rev. Lett. 102, 128102 (2009)

    Article  ADS  Google Scholar 

  45. S.R. Krishnan et al., Phys. Rev. Lett. 107, 173402 (2011)

    Article  ADS  Google Scholar 

  46. B. Schütte, M. Arbeiter, A. Mermillod-Blondin, M.J.J. Vrakking, A. Rouzée, T. Fennel, Phys. Rev. Lett. 116, 033001 (2016)

    Article  ADS  Google Scholar 

  47. G. Mie, Ann. Phys. (Leipzig) 25, 377 (1908)

    Article  ADS  Google Scholar 

  48. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008)

    Article  ADS  Google Scholar 

  49. F. Théberge, S. Chin, Appl. Phys. A 80, 1505 (2005)

    Article  ADS  Google Scholar 

  50. M. Negro, H. Ruf, B. Fabre, F. Dorchies, M. Devetta, D. Staedter, C. Vozzi, Y. Mairesse, S. Stagira, New J. Phys. 16, 073004 (2014)

    Article  ADS  Google Scholar 

  51. E. Skopalová, Y.C. El-Taha, A. Zaïr, M. Hohenberger, E. Springate, J.W.G. Tisch, R.A. Smith, J.P. Marangos, Phys. Rev. Lett. 104, 203401 (2010)

    Article  ADS  Google Scholar 

  52. S.R. Krishnan, R. Gopal, R. Rajeev, J. Jha, V. Sharma, M. Mudrich, R. Moshammer, M. Krishnamurthy, Phys. Chem. Chem. Phys. 16, 8721 (2014)

    Article  Google Scholar 

  53. B. Schütte, P. Ye, S. Patchkovskii, D.R. Austin, C. Brahms, C. Strüber, T. Witting, M.Yu. Ivanov, J.W.G. Tisch, J.P. Marangos, Sci. Rep. 6, 39664 (2016)

    Google Scholar 

  54. T. Fennel, T. Döppner, J. Passig, C.H. Schaal, J. Tiggesbäumker, K.H. Meiwes-Broer, Phys. Rev. Lett. 98, 143401 (2007)

    Google Scholar 

  55. S. Zherebtsov et al., Nat. Phys. 7, 656 (2011)

    Article  Google Scholar 

  56. U. Saalmann, J.M. Rost, Phys. Rev. Lett. 100, 133006 (2008)

    Article  ADS  Google Scholar 

  57. C. Bostedt, H. Thomas, M. Hoener, T. Mller, U. Saalmann, I. Georgescu, C. Gnodtke, J.M. Rost, New J. Phys. 12, 083004 (2010)

    Article  ADS  Google Scholar 

  58. E. Ackad, N. Bigaouette, L. Ramunno, J. Phys. B 44, 165102 (2011)

    Article  ADS  Google Scholar 

  59. M. Müller et al., J. Phys. B 48, 174002 (2015)

    Article  ADS  Google Scholar 

  60. M. Krikunova et al., J. Phys. B 45, 105101 (2012)

    Article  ADS  Google Scholar 

  61. M. Arbeiter, C. Peltz, T. Fennel, Phys. Rev. A 89, 043428 (2014)

    Article  ADS  Google Scholar 

  62. B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, J. Phys. B 48, 185101 (2015)

    Article  ADS  Google Scholar 

  63. D. Hrivnak, R. Kalus, Chem. Phys. 264, 319 (2001)

    Article  ADS  Google Scholar 

  64. H. Iwayama, M. Nagasono, J.R. Harries, E. Shigemasa, Opt. Express 20, 23174 (2012)

    Article  ADS  Google Scholar 

  65. L. Schroedter et al., Phys. Rev. Lett. 112, 183401 (2014)

    Article  ADS  Google Scholar 

  66. M. Hoener et al., J. Phys. B 41, 181001 (2008)

    Article  ADS  Google Scholar 

  67. T. Fennel, L. Ramunno, T. Brabec, Phys. Rev. Lett. 99, 233401 (2007)

    Article  ADS  Google Scholar 

  68. M. Tchaplyguine, M. Lundwall, M. Gisselbrecht, G. Öhrwall, R. Feifel, S. Sorensen, S. Svensson, N. Mårtensson, O. Björneholm, Phys. Rev. A 69, 031201(R) (2004)

    Google Scholar 

  69. B. Schütte, T. Oelze, M. Krikunova, M. Arbeiter, T. Fennel, M.J.J. Vrakking, A. Rouzée, New J. Phys. 17, 033043 (2015)

    Article  ADS  Google Scholar 

  70. S. Li, R.R. Jones, Phys. Rev. Lett. 112, 143006 (2014)

    Article  ADS  Google Scholar 

  71. Z.H. Loh, M. Khalil, R.E. Correa, R. Santra, C. Buth, S.R. Leone, Phys. Rev. Lett. 98, 143601 (2007)

    Article  ADS  Google Scholar 

  72. E. Goulielmakis et al., Nature 466, 739 (2010)

    Article  ADS  Google Scholar 

  73. S. Green, Annu. Rev. Phys. Chem. 32, 103 (1981)

    Article  ADS  Google Scholar 

  74. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, F. Krausz, Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  75. B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Phys. Rev. Lett. 114, 123002 (2015)

    Article  ADS  Google Scholar 

  76. B. Schütte, M. Arbeiter, T. Fennel, G. Jabbari, A.I. Kuleff, M.J.J. Vrakking, A. Rouzée, Nat. Commun. 6, 8596 (2015)

    Article  Google Scholar 

  77. P. Agostini, F. Fabre, G. Mainfray, G. Petite, N.K. Rahman, Phys. Rev. Lett. 42, 1127 (1979)

    Article  ADS  Google Scholar 

  78. R.R. Freeman, P.H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, M.E. Geusic, Phys. Rev. Lett. 59, 1092 (1987)

    Article  ADS  Google Scholar 

  79. G.M. Lawrence, Phys. Rev. A 2, 397 (1970)

    Article  ADS  Google Scholar 

  80. R. Feifel, J.H.D. Eland, D. Edvardsson, J. Chem. Phys. 122, 144308 (2005)

    Article  ADS  Google Scholar 

  81. A.S. Sandhu, E. Gagnon, R. Santra, V. Sharma, W. Li, P. Ho, P. Ranitovic, C.L. Cocke, M.M. Murnane, H.C. Kapteyn, Science 322, 1081 (2008)

    Article  ADS  Google Scholar 

  82. P.M. Dehmer, W.L. Luken, W.A. Chupka, J. Chem. Phys. 67, 195 (1977)

    Article  ADS  Google Scholar 

  83. H. Wang, M. Chini, S. Chen, C.H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, Z. Chang, Phys. Rev. Lett. 105, 143002 (2010)

    Article  ADS  Google Scholar 

  84. B. Schütte, J. Lahl, T. Oelze, M. Krikunova, M.J.J. Vrakking, A. Rouzée, Eur. Phys. J. D 70, 115 (2016)

    Article  ADS  Google Scholar 

  85. B. Schütte, M.J.J. Vrakking, A. Rouzée, Phys. Rev. A. 95, 063417 (2017)

    Google Scholar 

  86. L.S. Cederbaum, J. Zobeley, F. Tarantelli, Phys. Rev. Lett. 79, 4778 (1997)

    Article  ADS  Google Scholar 

  87. A.I. Kuleff, K. Gokhberg, S. Kopelke, L.S. Cederbaum, Phys. Rev. Lett. 105, 043004 (2010)

    Article  ADS  Google Scholar 

  88. S. Yase et al., Phys. Rev. A 88, 043203 (2013)

    Article  ADS  Google Scholar 

  89. Y. Ovcharenko et al., Phys. Rev. Lett. 112, 073401 (2014)

    Article  ADS  Google Scholar 

  90. D. Iablonskyi et al., Phys. Rev. Lett. 117, 276806 (2016)

    Article  Google Scholar 

  91. T. Takanashi et al., Phys. Rev. 118, 033202 (2017)

    Google Scholar 

  92. T. Oelze et al., Sci. Rep. 7, 40736 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Marc Vrakking, Arnaud Rouzée, Thomas Fennel, Maria Krikunova, Alexander Kuleff, John Tisch, Jon Marangos, Serguei Patchkovskii and Misha Ivanov for the very fruitul collaborative work that has led to the results presented in this chapter. I would also like to gratefully acknowledge the PhD students and postdocs who contributed to the experimental and theoretical work described here. Funding for part of the work performed at the Imperial College London was provided by the Deutsche Forschungsgemeinschaft via a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Schütte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schütte, B. (2017). Tracing Nonlinear Cluster Dynamics Induced by Intense XUV, NIR and MIR Laser Pulses. In: Yamanouchi, K., Hill III, W., Paulus, G. (eds) Progress in Ultrafast Intense Laser Science XIII. Springer Series in Chemical Physics(). Springer, Cham. https://doi.org/10.1007/978-3-319-64840-8_5

Download citation

Publish with us

Policies and ethics