Skip to main content

Probing Multiple Molecular Orbitals in an Orthogonally Polarized Two-Color Laser Field

  • Chapter
  • First Online:
Progress in Ultrafast Intense Laser Science XIII

Part of the book series: Springer Series in Chemical Physics ((PUILS))

Abstract

High-harmonic radiation emitted from gaseous molecules is a coherent extreme ultraviolet (EUV) radiation that carries information on electronic structure and dynamics of the molecule. High-harmonics are generated when an electron, ionized and accelerated in a strong laser field, recombines with the parent ion. During the recombination, a dipole moment is induced by the returning electron and the parent ion, emitting the harmonic radiation after the periodic repetition of the process. Characteristics of the bound electron, thus, can be imprinted in the high-harmonic radiation. The highest occupied molecular orbital (HOMO) is mostly ionized in a strong laser field and reveals its characteristics dominantly. Energetically low-lying molecular orbitals referred to HOMO-1 and HOMO-2 also contribute to the radiation. Multi-orbital contributions to the radiation distort proper information on a specific orbital. Resolving the contribution of each orbital is, thus, crucial for understanding molecular dynamics. By applying an orthogonally polarized two-color laser field that consists of the fundamental and its second-harmonic field, we show that high-harmonic radiation emitted from the two highest-occupied molecular orbitals, HOMO and HOMO-1, of aligned molecules can be resolved. The characteristics attributed to the two orbitals are found to be separately imprinted in odd and even harmonics. Two-dimensional high-harmonic spectroscopy using orthogonal odd and even harmonics may enable us to observe multi-orbital dynamics during chemical reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. P.B. Corkum, F. Krausz, Attosecond science. Nat. Phys. 3, 381–387 (2007)

    Article  Google Scholar 

  2. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  3. M. Drescher et al., Time-resolved atomic inner-shell spectroscopy. Nature 419, 803 (2002)

    Article  ADS  Google Scholar 

  4. M. Uiberacker et al., Attosecond real-time observation of electron tunneling in atoms. Nature 446, 627 (2007)

    Article  ADS  Google Scholar 

  5. M. Schultze et al., Delay in photoemission. Science 328(5986), 1658 (2010)

    Article  ADS  Google Scholar 

  6. F. Calegari et al., Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346(6207), 336 (2014)

    Article  ADS  Google Scholar 

  7. J. Itatani et al., Tomographic imaging of molecular orbitals. Nature 432, 867 (2004)

    Article  ADS  Google Scholar 

  8. S. Haessler, Attosecond imaging of molecular electronic wavepackets. Nat. Phys. 6, 200 (2010)

    Article  Google Scholar 

  9. C. Vozzi et al., Generalized molecular orbital tomography. Nat. Phys. 7, 822 (2011)

    Google Scholar 

  10. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  11. B.K. McFarland, J.P. Farrell, P.H. Bucksbaum, M. Gühr, High harmonic generation from multiple orbitals in N2. Science 322, 1232 (2008)

    Article  ADS  Google Scholar 

  12. O. Smirnova et al., High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972 (2009)

    Article  ADS  Google Scholar 

  13. H. Yun et al., Resolving multiple molecular orbitals using two-dimensional high-harmonic spectroscopy. Phys. Rev. Lett. 114, 153901 (2015)

    Article  ADS  Google Scholar 

  14. D. Shafir, Y. Mairesse, D.M. Villeneuve, P.B. Corkum, N. Dudovich, Atomic wavefunctions probed through strong-field light-matter interaction. Nat. Phys. 5, 412 (2009)

    Article  Google Scholar 

  15. C.M. Kim, C.H. Nam, Selection of an electron path of high-order harmonic generation in a two-colour femtosecond laser field. J. Phys. B: At. Mol. Opt. Phys. 39, 3199 (2006)

    Article  ADS  Google Scholar 

  16. D. Pavičić, K.F. Lee, D.M. Rayner, P.B. Corkum, D.M. Villeneuve, Direct measurement of the angular dependence of ionization for N2, O2, and CO2 in intense laser fields. Phys. Rev. Lett. 98, 243001 (2007)

    Article  ADS  Google Scholar 

  17. H. Stapelfeldt, T. Seideman, Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543 (2003)

    Article  ADS  Google Scholar 

  18. M.J. Frisch et al., Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CT (2004)

    Google Scholar 

  19. I.J. Kim et al., Highly efficient high-harmonic generation in an orthogonally polarized two-color laser field. Phys. Rev. Lett. 94, 243901 (2005)

    Article  ADS  Google Scholar 

  20. K. Yabana, T. Nakatsukasa, J.-I. Iwata, G.F. Bertsch, Real‐time, real‐space implementation of the linear response time‐dependent density‐functional theory. Phys. Stat. Sol. 243, 1121 (2006)

    Google Scholar 

  21. L. Kleinman, D.M. Bylander, Efficacious form for model pseudopotentials. Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  22. N. Troullier, J.L. Martins, Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  24. P. Balcou, P. Salières, A. L’Huillier, M. Lewenstein, Generalized phase-matching conditions for high harmonics: The role of field-gradient forces. Phys. Rev. A 55, 3204 (1997)

    Article  ADS  Google Scholar 

  25. G.H. Lee et al., Alignment dependence of high harmonics contributed from HOMO and HOMO-1 orbitals of N2 molecules. J. Phys. B: At. Mol. Opt. Phys. 43, 205601 (2010)

    Article  ADS  Google Scholar 

  26. T. Kanai, S. Minemoto, H. Sakai, Quantum interference during high-order harmonic generation from aligned molecules. Nature 435, 470 (2005)

    Article  ADS  Google Scholar 

  27. C. Vozzi et al., Controlling two-center interference in molecular high harmonic generation. Phys. Rev. Lett. 95, 153902 (2005)

    Article  ADS  Google Scholar 

  28. H.J. Wörner, J.B. Bertrand, P. Hockett, P.B. Corkum, D.M. Villeneuve, Controlling the interference of multiple molecular orbitals in high-harmonic generation. Phys. Rev. Lett. 104, 233904 (2010)

    Article  ADS  Google Scholar 

  29. R. Torres et al., Revealing molecular structure and dynamics through high-order harmonic generation driven by mid-IR fields. Phys. Rev. A 81, 051802(R) (2010)

    Article  ADS  Google Scholar 

  30. S.-K. Son, S.-I. Chu, Multielectron effects on the orientation dependence and photoelectron angular distribution of multiphoton ionization of CO2 in strong laser fields. Phys. Rev. A 80, 011403(R) (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Hee Nam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yun, H., Kim, H.T., Kim, K.T., Nam, C.H. (2017). Probing Multiple Molecular Orbitals in an Orthogonally Polarized Two-Color Laser Field. In: Yamanouchi, K., Hill III, W., Paulus, G. (eds) Progress in Ultrafast Intense Laser Science XIII. Springer Series in Chemical Physics(). Springer, Cham. https://doi.org/10.1007/978-3-319-64840-8_4

Download citation

Publish with us

Policies and ethics