Skip to main content

The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples

  • Chapter
  • First Online:
Foundations of Mathematics and Physics One Century After Hilbert

Abstract

Gauge symmetries are a cornerstone of modern physics but they come with technical difficulties when it comes to quantization, to accurately describe particles phenomenology or to extract observables in general. These shortcomings must be met by essentially finding a way to effectively reduce gauge symmetries. We propose a review of a way to do so which we call the dressing field method. We show how the BRST algebra satisfied by gauge fields, encoding their gauge transformations, is modified. We outline noticeable applications of the method, such as the electroweak sector of the Standard Model and the local twistors of Penrose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See [45] for a critical discussion of its scope and limits.

  2. 2.

    Weyl topped this with an even stronger endorsement of the importance of symmetries in physics: “As far as I see, all a priori statements in physics have their origin in symmetry” [68].

  3. 3.

    See the nice short appendix by S. S. Chern of the book on differential geometry he co-authored [12].

  4. 4.

    In the general theory the group \(G'\) is replaced by a \(C^*\)-algebra A.

  5. 5.

    For instance, such a term is the one for a spontaneous symmetry breaking mechanism.

  6. 6.

    In fact, it could even be reduced to a technical step useful to perform the usual field quantization procedure, which relies heavily on the identification of propagators and mass terms in the Lagrangian.

  7. 7.

    While in the previous example we had \(G=K=SU(2)\subset H=U(1)\times SU(2)\).

  8. 8.

    Notice that from now on we shall make use of “\(\cdot \)” to denote Greek indices contractions, while Latin indices contraction is naturally understood from matrix multiplication.

  9. 9.

    Beware of the fact that in this index free notation a is the set of components of the 1-form a. This should be clear from the context.

  10. 10.

    Let us mention here how it is has been difficult, in several occasions, to convince some colleagues that these relations are not mathematically on the same footing.

References

  1. J. Attard, J. François. Tractors and Twistors from Conformal Cartan Geometry: A Gauge Theoretic Approach I. Tractors. Adv. Theor. Math. Phys. 2016. arXiv:1609.07307

  2. J. Attard, J. François. Tractors and Twistors from Conformal Cartan Geometry: A Gauge Theoretic Approach II. Twistors. Class. Quantum Grav. 34(8), 085004, 2017. arxiv:1611.03891

    Article  MathSciNet  Google Scholar 

  3. J. Attard, S. Lazzarini. A note on Weyl invariance in gravity and the Wess-Zumino functional. Nucl. Phys. B, 2016. ISSN 0550-3213. https://doi.org/10.1016/j.nuclphysb.2016.07.016

  4. J. Attard, J. François, S. Lazzarini. Weyl gravity and Cartan geometry. Phys. Rev. D, 93, 085032, 2016. https://doi.org/10.1103/PhysRevD.93.085032

  5. T. Bailey, M. Eastwood, A.R. Gover. Thomas’s structure bundle for conformal, projective and related structures. Rocky Mt. J. Math. 24(4), 1191–1217 (1994). https://doi.org/10.1216/rmjm/1181072333

    Article  MathSciNet  Google Scholar 

  6. C.M. Becchi, G. Ridolfi, An Introduction to Relativistic Processes and the Standard Model of Electroweak Interactions (Springer, Berlin, 2006)

    Book  Google Scholar 

  7. L. Bonora, P. Cotta-Ramusino, Some remark on brs transformations, anomalies and the cohomology of the Lie algebra of the group of gauge transformations. Comm. Math. Phys. 87, 589–603 (1983)

    Article  MathSciNet  Google Scholar 

  8. K. Brading, E. Castellani, Symmetries in Physics: Philosophical Reflections (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  9. K. Brading, E. Castellani. Symmetry and Symmetry Breaking, 2013. http://plato.stanford.edu/archives/spr2013/entries/symmetry-breaking/

  10. R. Brout, F. Englert, Broken symmetry and the mass of the gauge vector mesons. Phys. Rev. Lett. 13, 321–323 (1964)

    Article  MathSciNet  Google Scholar 

  11. A. Cap, J. Slovak. Parabolic geometries I: background and general theory, in Mathematical Surveys and Monographs, vol. 1 (American Mathematical Society, 2009)

    Google Scholar 

  12. S.S. Chern, W.H. Chen, K.S. Lam. Lectures on differential geometry. Series on University Mathematics (Book 1) (World Scientific Publishing Company, 1999)

    Google Scholar 

  13. M.N. Chernodub, L. Faddeev, A.J. Niemi. Non-Abelian supercurrents and electroweak theory. JHEP, 12, 014 (2008). https://doi.org/10.1088/1126-6708/2008/12/014

  14. S. Curry, A.R. Gover. An Introduction to Conformal Geometry and Tractor Calculus, with a View to Applications in General Relativity, 2014. arXiv:1412.7559

  15. P.A.M. Dirac, Gauge-invariant formulation of quantum electrodynamics. Can. J. Phys. 33, 650–660 (1955)

    Article  MathSciNet  Google Scholar 

  16. P.A.M. Dirac, The Principles of Quantum Mechanics, 4th edn. (Oxford University Press, Oxford, 1958)

    Google Scholar 

  17. M. Dubois-Violette, The Weil-BRS algebra of a Lie algebra and the anomalous terms in gauge theory. J. Geom. Phys. 3, 525–565 (1987)

    Article  MathSciNet  Google Scholar 

  18. M. Eastwood, T. Bailey, Complex paraconformal manifolds - their differential geometry and twistor theory. Forum Mathematicum 3(1), 61–103 (1991)

    MathSciNet  MATH  Google Scholar 

  19. L. Faddeev, in An Alternative Interpretation of the Weinberg-Salam Model (Springer, Dordrecht, 2009). pp. 3–8. ISBN 978-90-481-2287-5. https://doi.org/10.1007/978-90-481-2287-5_1

  20. C. Fournel, J. François, S. Lazzarini, T. Masson, Gauge invariant composite fields out of connections, with examples. Int. J. Geom. Methods Mod. Phys. 11(1), 1450016 (2014)

    Article  MathSciNet  Google Scholar 

  21. J. François, Reduction of Gauge Symmetries: A New Geometrical Approach (Aix-Marseille Université, Thesis, 2014)

    Google Scholar 

  22. J. François, S. Lazzarini, T. Masson. Nucleon spin decomposition and differential geometry. Phys. Rev. D, 91, 045014 (2015). https://doi.org/10.1103/PhysRevD.91.045014

  23. J. François, S. Lazzarini, T. Masson. Residual Weyl symmetry out of conformal geometry and its BRST structure. JHEP 09, 195 (2015). https://doi.org/10.1007/JHEP09(2015)195

  24. J. François, S. Lazzarini, T. Masson. Becchi-Rouet-Stora-Tyutin structure for the mixed Weyl-diffeomorphism residual symmetry. J. Math. Phys. 57(3), 033504 (2016). https://doi.org/10.1063/1.4943595

    Article  MathSciNet  Google Scholar 

  25. S. Friederich. Gauge symmetry breaking in gauge theories—in search of clarification. Eur. J. Philos. Sci. 3(2), 157–182 (2013). ISSN 1879-4920. https://doi.org/10.1007/s13194-012-0061-y

    Article  MathSciNet  Google Scholar 

  26. H. Friedrich. Twistor connection and normal conformal Cartan connection. Gen. Relativ. Gravit. 8(5), 303–312 (1977). ISSN 1572-9532. https://doi.org/10.1007/BF00771141

    Article  MathSciNet  Google Scholar 

  27. J. Frohlich, G. Morchio, F. Strocchi. Higgs phenomenon without symmetry breaking order parameter. Nucl. Phys. B 190(3), 553–582 (1981). ISSN 0550-3213. https://doi.org/10.1016/0550-3213(81)90448-X

    Article  MathSciNet  Google Scholar 

  28. D. Garajeu, R. Grimm, S. Lazzarini, W-gauge structures and their anomalies: an algebraic approach. J. Math. Phys. 36, 7043–7072 (1995)

    Article  MathSciNet  Google Scholar 

  29. V.N. Gribov, Quantization of non-abelian gauge theories. Nucl. Phys. B 139, 1–19 (1978)

    Article  MathSciNet  Google Scholar 

  30. G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585–587 (1964)

    Article  Google Scholar 

  31. P.W. Higgs, Broken symmetry and the mass of gauge bosons. Phys. Rev. Lett. 13, 508–509 (1964)

    Article  MathSciNet  Google Scholar 

  32. P.W. Higgs. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 145, 1156–1163 (1966). https://doi.org/10.1103/PhysRev.145.1156

    Article  MathSciNet  Google Scholar 

  33. A. Ilderton, M. Lavelle, D. McMullan, Symmetry breaking, conformal geometry and gauge invariance. J. Phys. A: Math. Theor. 43(31), 312002 (2010)

    Article  MathSciNet  Google Scholar 

  34. T.W.B. Kibble. Symmetry breaking in non-abelian gauge theories. Phys. Rev. 155, 1554–1561 (1967). https://doi.org/10.1103/PhysRev.155.1554

    Article  Google Scholar 

  35. M. Korzyński, J. Lewandowski, The normal conformal Cartan connection and the Bach tensor. Class. Quantum Grav. 20(16), 3745 (2003)

    Article  MathSciNet  Google Scholar 

  36. F. Langouche, T. Schücker, R. Stora, Gravitational anomalies of the Adler-Bardeen type. Phys. Lett. B 145, 342–346 (1984)

    Article  MathSciNet  Google Scholar 

  37. L.D. Lantsman, Dirac fundamental quantization of gauge theories is the natural way of reference frames in modern physics. Fizika B 18, 99–140 (2009)

    Google Scholar 

  38. M. Lavelle, D. McMullan. Nonlocal symmetry for QED. Phys. Rev. Lett. 71, 3758–3761 (1993). https://doi.org/10.1103/PhysRevLett.71.3758

    Article  Google Scholar 

  39. M. Lavelle, D. McMullan. Observables and gauge fixing in spontaneously broken gauge theories. Phys. Lett. B 347(1), 89–94 (1995). ISSN 0370-2693. https://doi.org/10.1016/0370-2693(95)00046-N

    Article  Google Scholar 

  40. M. Lavelle, D. McMullan, Constituent quarks from QCD. Phys. Rep. 279, 1–65 (1997)

    Article  Google Scholar 

  41. S. Lazzarini, C. Tidei. Polyakov soldering and second-order frames: the role of the Cartan connection. Lett. Math. Phys. 85(1), 27–37 (2008). ISSN 1573-0530. https://doi.org/10.1007/s11005-008-0253-8

    Article  MathSciNet  Google Scholar 

  42. E. Leader, C. Lorcé, The angular momentum controversy: what is it all about and does it matter? Phys. Rep. 514, 163–248 (2014)

    Article  Google Scholar 

  43. C. Lorcé, Geometrical approach to the proton spin decomposition. Phys. Rev. D 87, 034031 (2013)

    Article  Google Scholar 

  44. J. Mañes, R. Stora, B. Zumino, Algebraic study of chiral anomalies. Comm. Math. Phys. 102, 157–174 (1985)

    Article  MathSciNet  Google Scholar 

  45. C.A. Martin, Gauge principles, gauge arguments and the logic of nature. Proc. Philos. Sci. Assoc. 3, 221–234 (2002)

    Article  MathSciNet  Google Scholar 

  46. T. Masson, J.-C. Wallet. A remark on the spontaneous symmetry breaking mechanism in the standard model, 2011. arXiv:1001.1176

  47. S.W. McDowell, F. Mansouri, Unified geometric theory of gravity and supergravity. Phys. Rev. Lett. 38, 739–742 (1977)

    Article  MathSciNet  Google Scholar 

  48. S.A. Merkulov, The twistor connection and gauge invariance principle. Comm. Math. Phys. 93(3), 325–331 (1984)

    Article  MathSciNet  Google Scholar 

  49. L. O’Raifeartaigh, The Dawning of Gauge Theory (Princeton University Press, Princeton Series in Physics, Princeton, 1997)

    MATH  Google Scholar 

  50. G.K. Pedersen, C-star Algebras and Their Automorphisms Groups (London Mathematical Society Monographs, Academic Press Inc., Cambridge, 1979)

    Google Scholar 

  51. R. Penrose, The central programme of twistor theory. Chaos Solitons Fractals 10, 581–611 (1999)

    Article  MathSciNet  Google Scholar 

  52. R. Penrose, M. MacCallum. Twistor theory: an approach to the quantisation of fields and space-time. Phys. Rep. 6(4), 241–316 (1973). ISSN 0370-1573. https://doi.org/10.1016/0370-1573(73)90008-2

    Article  MathSciNet  Google Scholar 

  53. R. Penrose, W. Rindler, Spinors and Space-Time, vol. 2 (Cambridge University Press, Cambridge, 1986)

    Book  Google Scholar 

  54. V. Pervushin. Dirac variables in gauge theories. Lecture notes in DAAD Summerschool on Dense Matter in Particle - and Astrophysics, JINR, Dubna, Russia, August 20–31, 2001. arXiv:hep-th/0109218v2

  55. A.M. Polyakov. Gauge transformations and diffeomorphisms. Int. J. Mod. Phys. A5, 833 (1990). https://doi.org/10.1142/S0217751X90000386

    Article  MathSciNet  Google Scholar 

  56. A.R. Gover, A. Shaukat, A. Waldron. Tractors, mass and Weyl invariance. Nucl. Phys. B 812(3), 424–455 (2009)

    Google Scholar 

  57. A.R. Gover, A. Shaukat, A. Waldron. Weyl invariance and the origins of mass. Phys. Lett. B, 675(1), 93–97 (2009)

    Article  Google Scholar 

  58. R.W. Sharpe. Differential geometry: Cartan’s generalization of Klein’s Erlangen Program, in Graduate Text in Mathematics, vol. 166 (Springer, Berlin, 1996)

    Google Scholar 

  59. I.M. Singer, Some remark on the Gribov ambiguity. Comm. Math. Phys. 60, 7–12 (1978)

    Article  MathSciNet  Google Scholar 

  60. S. Sternberg, Group Theory and Physics (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  61. R. Stora. The Wess Zumino consistency condition: a paradigm in renormalized perturbation theory. Fortsch. Phys. 54, 175–182 (2006). https://doi.org/10.1002/prop.200510266

    Article  MathSciNet  Google Scholar 

  62. W. Struyve. Gauge invariant accounts of the Higgs mechanism. Stud. Hist. Philos. Sci. B: Stud. Hist. Philos. Modern Phys. 42(4), 226–236 (2011). ISSN 1355-2198. https://doi.org/10.1016/j.shpsb.2011.06.003

    Article  MathSciNet  Google Scholar 

  63. A. Trautman, Fiber Bundles, Gauge Field and Gravitation, in General Relativity and Gravitation, vol. 1 (Plenum Press, New-York, 1979)

    Google Scholar 

  64. S. van Dam. Spontaneous symmetry breaking in the Higgs mechanism. PhiSci-Archive, 2011

    Google Scholar 

  65. C.V. Westenholz, On spontaneous symmetry breakdown and the Higgs mechanism. Acta Phys. Acad. Sci. Hung. 48, 213–224 (1980)

    Article  MathSciNet  Google Scholar 

  66. H. Weyl. Gravitation and electricity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1918, 465 (1918)

    Google Scholar 

  67. H. Weyl. A new extension of relativity theory. Annalen Phys. 59, 101–133 (1919); Annalen Phys. 364, 101 (1919)

    Google Scholar 

  68. H. Weyl, Symmetry (Princeton University Press, Princeton, 1952)

    Book  Google Scholar 

  69. D.P. Williams. Crossed Products of C-star Algebras, in Mathematical Surveys and Monographs, vol. 134 (American Mathematical Society, 2007)

    Google Scholar 

  70. D.K. Wise, Symmetric space, Cartan connections and gravity in three and four dimensions. SIGMA 5, 080–098 (2009)

    Google Scholar 

  71. D.K. Wise, MacDowell-Mansouri gravity and Cartan geometry. Class. Quantum Grav. 27, 155010 (2010)

    Article  MathSciNet  Google Scholar 

  72. C. Yang, Selected Papers (1945–1980), with Commentary (World Scientific Publishing Company, Singapore, 2005)

    MATH  Google Scholar 

  73. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn. (Oxford Science Publications, Oxford, 2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Attard, J., François, J., Lazzarini, S., Masson, T. (2018). The Dressing Field Method of Gauge Symmetry Reduction, a Review with Examples. In: Kouneiher, J. (eds) Foundations of Mathematics and Physics One Century After Hilbert. Springer, Cham. https://doi.org/10.1007/978-3-319-64813-2_13

Download citation

Publish with us

Policies and ethics