Skip to main content

Introduction to Electronics. Study, Design and Validation Tests

  • Chapter
  • First Online:
  • 682 Accesses

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 4))

Abstract

This chapter presents in detail the design and validation of specific instrumentation electronics regarding ac and dc electrochemical applications. The development of such electronics will be defined through a design architecture that will build up for an easy and understandable way for its design and validation for different applications.

This is a preview of subscription content, log in via an institution.

References

  • Arnaud A, Fiorelli R, Galup-Montoro C (2006) Nanowatt, sub-nS OTAs, with sub-10-mV input offset, using series-parallel current mirrors. IEEE J Solid-State Circuits 41:2009–2018. doi:10.1109/JSSC.2006.880606

    Article  Google Scholar 

  • Azcona C, Calvo B, Medrano N et al (2011) A CMOS micropower voltage-to-frequency converter for portable applications. In: 2011 7th conference on PhD research in microelectronics and electronics, PRIME 2011—conference proceedings, pp 141–144

    Google Scholar 

  • Aziz JNY, Abdelhalim K, Shulyzki R et al (2009) 256-channel neural recording and delta compression microsystem with 3D electrodes. IEEE J Solid-State Circuits 44:995–1005. doi:10.1109/JSSC.2008.2010997

    Article  Google Scholar 

  • Azzolini C, Magnanini A, Tonelli M et al (2010) A CMOS vector lock-in amplifier for sensor applications. Microelectron J. doi:10.1016/j.mejo.2009.11.002

    Google Scholar 

  • Bard A, Faulkner L (2001) Electrochemical methods: fundamentals and applications

    Google Scholar 

  • Barsoukov E, Macdonald JR (2005) Impedance spectroscopy

    Google Scholar 

  • Berggren C, Bjarnason B, Johansson G (2001) Capacitive biosensors. Electroanalysis 13:173–180

    Article  Google Scholar 

  • Beriet C, Pletcher D (1993) A microelectrode study of the mechanism and kinetics of the ferro/ferricyanide couple and its concentration. J Electroanal Chem 361:93–101

    Article  Google Scholar 

  • Bontidean I, Ahlqvist J, Mulchandani A et al (2003) Novel synthetic phytochelatin-based capacitive biosensor for heavy metal ion detection. Biosens Bioelectron 547–553

    Google Scholar 

  • Buendia R, Seoane F, Gil-Pita R et al (2010) A novel approach for removing the hook effect artefact from electrical bioimpedance spectroscopy measurements. J Phys: Conf Ser 224:12126. doi:10.1088/1742-6596/224/1/012126

    Google Scholar 

  • Calvo B, Medrano N, Celma S, Sanz MT (2009) A low-power high-sensitivity CMOS voltage-to-frequency converter. In: Midwest symposium on circuits and systems, pp 118–121

    Google Scholar 

  • Cheng MS, Ho JS, Lau SH et al (2013) Impedimetric microbial sensor for real-time monitoring of phage infection of Escherichia coli. Biosens Bioelectron 47:340–344. doi:10.1016/j.bios.2013.03.050

    Article  Google Scholar 

  • Colomer-Farrarons J, Miribel-Català P, Rodríguez-Villarreal I, Samitier J (2011) Portable bio-devices: design of electrochemical instruments from miniaturized to implantable devices. New Perspect Biosens Technol Appl 373–400. doi:10.5772/936

  • D’Amico A, De Marcellis A, Di Carlo C et al (2010) Low-voltage low-power integrated analog lock-in amplifier for gas sensor applications. Sens Actuators B Chem 144:400–406. doi:10.1016/j.snb.2009.01.045

    Article  Google Scholar 

  • Gabal M, Medrano N, Calvo B et al (2010) A complete low voltage analog lock-in amplifier to recover sensor signals buried in noise for embedded applications. Proc Eng 74–77

    Google Scholar 

  • Gaspar J, Chen SF, Gordillo A et al (2004) Digital lock in amplifier: study, design and development with a digital signal processor. Microprocess Microsyst 28:157–162. doi:10.1016/j.micpro.2003.12.002

    Article  Google Scholar 

  • Gore A, Chakrabartty S, Pal S, Alocilja EC (2006) A multichannel femtoampere-sensitivity potentiostat array for biosensing applications. IEEE Trans Circuits Syst I Regul Pap 53:2357–2363. doi:10.1109/TCSI.2006.884432

    Article  Google Scholar 

  • Grimnes S (1983) Impedance measurement of individual skin surface electrodes. Med Biol Eng Comput 21:750–755. doi:10.1007/BF02464038

    Article  Google Scholar 

  • Grosse C, Schwan HP (1992) Cellular membrane potentials induced by alternating fields. Biophys J 63:1632–1642. doi:10.1016/S0006-3495(92)81740-X

    Article  Google Scholar 

  • Hanson S, Seok M, Lin YS et al (2009) A low-voltage processor for sensing applications with picowatt standby mode. IEEE J Solid-State Circuits 1145–1155

    Google Scholar 

  • Hernández Cabrera F, Guerrero Salazar CA, De J, Alvarado JB (2005) Determinación de las Propiedades Eléctricas en Tejido Sanguineo. Cienc Uanl VIII:7–13

    Google Scholar 

  • Huang C-Y, Chun-Yueh (2011) Design of a voltammetry potentiostat for biochemical sensors. Analog Integr Circuits Signal Process 67:375–381. doi:10.1007/s10470-010-9569-2

  • Jani IV, Peter TF (2013) How point-of-care testing could drive innovation in global health. N Engl J Med 368:24–2319. doi:10.1056/NEJMsb1214197

    Article  Google Scholar 

  • Kakerow RG, Kappert H, Spiegel E, Manoli Y (1995) Low-power single-chip CMOS potentiostat. In: Proceedings of the international solid-state sensors actuators conference—transducers ’95, vol 1, pp 142–145. doi:10.1109/SENSOR.1995.717115

  • Kraver KL, Guthaus MR, Strong TD et al (2001) A mixed-signal sensor interface microinstrument. Sens Actuators A Phys 90:266–277. doi:10.1016/S0924-4247(01)00596-9

    Article  Google Scholar 

  • Lasia A (1999) Electrochemical impedance spectroscopy and its applications. In: Conway BE, Bockris J, White RE (eds) Modern aspects of electrochemistry. Kluwer Academic/Plenum Publishers, New York, pp 143–248

    Google Scholar 

  • Lenaerts B, Puers R (2009) Magnetic induction. In: Omnidirectional inductive powering for biomedical implants. Analog circuits and signal processing, pp 13–37

    Google Scholar 

  • Li G, Zhou M, He F, Lin L (2011) A Novel Algorithm Combining Oversampling and Digital Lock-In Amplifier of High Speed and Precision. Rev Sci Instrum. doi:10.1063/1.3633943

    Google Scholar 

  • Li N, Brahmendra A, Veloso AJ et al (2012) Disposable immunochips for the detection of Legionella pneumophila using electrochemical impedance spectroscopy. Anal Chem 84:3485–3488. doi:10.1021/ac3003227

    Article  Google Scholar 

  • Li X, Meijer GCM (2005) A low-cost and accurate interface for four-electrode conductivity sensors. IEEE Trans Instrum Meas 54:2433–2437. doi:10.1109/TIM.2005.858130

    Article  Google Scholar 

  • Martin S, Gebara F, Strong TD, Brown RB (2004) A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat. In: 2004 IEEE international symposium on circuits system (IEEE Cat No04CH37512), vol 4, pp 6–9. doi:10.1109/ISCAS.2004.1329148

  • Martin SM, Gebara FH, Larivee BJ, Brown RB (2005) A CMOS-integrated microinstrument for trace detection of heavy metals. IEEE J Solid-State Circuits

    Google Scholar 

  • Min M, Märtens O, Parve T (2000) Lock-in measurement of bio-impedance variations. Measurement 27:21–28. doi:10.1016/S0263-2241(99)00048-2

    Article  Google Scholar 

  • Murari K, Thakor N, Stanacevic M, Cauwenberghs G (2004) Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In: 26th annual international conference on IEEE engineering in medicine and biology society, vol 2, pp 4063–4066. doi:10.1109/IEMBS.2004.1404134

  • Nič M (1997) IUPAC Compendium of chemical terminology, 2nd edn. IUPAC Compend Chem Terminol Gold B 2:1997–1997. doi:10.1351/goldbook.F02510

  • Park S-M, Yoo J-S, Chang B-Y, Ahn E-S (2006) Novel instrumentation in electrochemical impedance spectroscopy and a full description of an electrochemical system. Pure Appl Chem 78:1069–1080. doi:10.1351/pac200678051069

    Article  Google Scholar 

  • Patterson R (2000) Bioelectric impedance measurements. In: The biomedical engineering handbook, pp 1407–1415

    Google Scholar 

  • Petrovic S (2000) Cyclic voltammetry of hexachloroiridate(IV): an alternative to the electrochemical study of the ferricyanide ion. Chem Educ 5:231–235. doi:10.1007/s00897000416a

    Article  Google Scholar 

  • Pop GAM, Hop WJ, Moraru L et al (2003) Blood electrical impedance closely matches whole blood viscosity as parameter of hemorheology and inflammation. Appl Rheol 13:305–312

    Google Scholar 

  • Pradhan R, Mitra A, Das S (2012) Impedimetric characterization of human blood using three-electrode based ECIS devices. J Electr Bioimpedance 3:12–19. doi:10.5617/jeb.238

    Google Scholar 

  • Punter-Villagrasa J, Colomer-Farrarons J, Li P (2013) Bioelectronics for amperometric biosensors. In: State of the art in biosensors—general aspects. InTech

    Google Scholar 

  • Punter-Villagrasa J, Cid J, Colomer-Farrarons J et al (2015) Bioimpedance technique for point-of-care devices relying on disposable label-free sensors—an anemia detection case. In: Biosensors—micro and nanoscale applications. InTech

    Google Scholar 

  • Punter-Villagrasa J, Paez-Aviles C, Colomer-Farrarons J et al (2016) A portable point-of-care device for multi-parametric diabetes mellitus analysis. In: IECON 2015—41st annual conference of the IEEE industrial electronics society, pp 1252–1257

    Google Scholar 

  • Reay RJ, Kounaves SP, Kovacs GTA (1994) An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. In: Proceedings of IEEE international solid-state circuits conference—ISSCC ’94, pp 162–163

    Google Scholar 

  • Rekha Swamy BEK, Deepa R et al (2009) Electrochemical investigations of dopamine at chemically modified alcian blue carbon paste electrode: a cyclic voltammetric study. Int J Electrochem Sci 4:832–845

    Google Scholar 

  • Ribaut C, Reybier K, Reynes O et al (2009) Electrochemical impedance spectroscopy to study physiological changes affecting the red blood cell after invasion by malaria parasites. Biosens Bioelectron 24:2721–2725. doi:10.1016/j.bios.2008.12.018

    Article  Google Scholar 

  • Rieger S, Pfau J, Stieglitz T et al (2016) Concept and development of an electronic framework intended for electrode and surrounding environment characterization in vivo. Sensors 17:59. doi:10.3390/s17010059

    Article  Google Scholar 

  • Schwan HP, Ferris CD (1968) Four-electrode null techniques for impedance measurement with high resolution. Rev Sci Instrum 39:481–485. doi:10.1063/1.1683413

    Article  ADS  Google Scholar 

  • Scully JR, Silverman DC, Kendig MW (1993) Electrochemical impedance : analysis and interpretation. ASTM

    Google Scholar 

  • Stanacevic M, Murari K, Cauwenberghs G, Thakor N (2004) 16-channel wide-range VLSI potentiostat array. IEEE Int Work Biomed Circuits Syst 2004:17–20. doi:10.1109/BIOCAS.2004.1454176

    Google Scholar 

  • Strong TD, Martin SM, Franklin RF, Brown RB (2006) Integrated electrochemical neurosensors. In: 2006 IEEE international symposium on circuits and systems, pp 4110–4113. doi:10.1109/ISCAS.2006.1693533

  • Taliene VR, Ruzgas T, Razumas V, Kulys J (1994) Chronoamperometric and cyclic voltammetric study of carbon paste electrodes using ferricyanide and ferrocenemonocarboxylic acid. J Electroanal Chem 372:85–89. doi:10.1016/0022-0728(93)03285-W

    Article  Google Scholar 

  • Veeravalli A, Sánchez-Sinencio E, Silva-Martínez J (2002) Transconductance amplifier structures with very small transconductances: a comparative design approach. IEEE J Solid-State Circuits 37:770–775. doi:10.1109/JSSC.2002.1004582

    Article  Google Scholar 

  • Woo LY, Martin LP, Glass RS, Gorte RJ (2007) Impedance characterization of a model Au∕Yttria-stabilized Zirconia∕Au electrochemical cell in varying oxygen and NO[sub x] concentrations. J Electrochem Soc 154:J129. doi:10.1149/1.2456328

    Article  Google Scholar 

  • Wu Q, Yang H, Yin T, Zhang C (2009) A high precision CMOS weak current readout circuit. J Semicond 30:6–75011. doi:10.1088/1674-4926/

    Google Scholar 

  • Xu M, Luo X, Davis JJ (2013) The label free picomolar detection of insulin in blood serum. Biosens Bioelectron 39:21–25. doi:10.1016/j.bios.2012.06.014

    Article  Google Scholar 

  • Ya ML, Khan S, Nordin AN, et al (2011a) A low-cost first-order sigma-delta converter design and analysis. In: Conference record—IEEE instrumentation and measurement technology conference, pp 1–5

    Google Scholar 

  • Ya ML, Nordin AN, Khan S (2011b) Design and simulation of an on-chip oversampling converter with a CMOS-MEMS differential capacitive sensor. In: 2011 Symposium on Design, Test, integration and packaging of MEMS/MOEMS, pp 18–22

    Google Scholar 

  • Yang L (2008) Electrical impedance spectroscopy for detection of bacterial cells in suspensions using interdigitated microelectrodes. Talanta 74:1621–1629. doi:10.1016/j.talanta.2007.10.018

    Article  Google Scholar 

  • Zhai B, Pant S, Nazhandali L et al (2009) Energy-efficient subthreshold processor design. IEEE Trans Very Large Scale Integr Syst 17:1127–1137. doi:10.1109/TVLSI.2008.2007564

    Article  Google Scholar 

  • Zhang JZJ, Trombly N, Mason A (2004) A low noise readout circuit for integrated electrochemical biosensor arrays. Proc IEEE Sens 36–39. doi:10.1109/ICSENS.2004.1426093

  • Zou Z, Kai J, Rust MJ et al (2007) Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens Actuators A Phys 136:518–526. doi:10.1016/j.sna.2006.12.006

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by project DADDi2 (Dispositivo Autónomo Desechable para el Diagnóstico de la Diabetes, TEC-2013-48506-C3-3-R) from the Spanish Ministry of Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Punter-Villagrasa .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Punter-Villagrasa, J., Colomer-Farrarons, J., del Campo, F.J., Miribel-Català, P. (2017). Introduction to Electronics. Study, Design and Validation Tests. In: Amperometric and Impedance Monitoring Systems for Biomedical Applications. Bioanalysis, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-64801-9_3

Download citation

Publish with us

Policies and ethics