Skip to main content

Developmental Anatomy of the ACL and Knee

  • Chapter
  • First Online:
Book cover The Pediatric Anterior Cruciate Ligament

Abstract

The anterior cruciate ligament (ACL) originates from the mesenchyme and becomes a distinct cruciate ligament from the posterior cruciate ligament (PCL) by week 10. The ACL is associated with two distinct bundles, anteromedial (AM) and posterolateral (PL), that originate on the lateral femoral condyle and insert on the intercondylar spine of the tibia. As the primary stabilizer of the knee, the ACL is responsible for resisting anterior translation and rotation of the tibia on the femur. Both the physis (growth plate) and tibial tuberosity lie in close proximity to the ACL. Pediatric ACL reconstruction can be challenging due to the risk of causing damage to the physis, articular cartilage, lateral collateral ligament (LCL), popliteus tendon, and meniscus. Future prospective studies are needed to determine optimal techniques for management of ACL injuries in those with open growth plates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wasserlauf BL, Paletta GA. Developmental anatomy of the pediatric and adolescent knee. In:The pediatric and adolescent knee: Elsevier, Amsterdam, Netherlands; 2006. p. 27–32.

    Google Scholar 

  2. Guidera KJ, Ganey TM, Keneally CR, Ogden JA. The embryology of lower-extremity torsion. Clin Orthop Relat Res. 1994;302:17–21.

    Google Scholar 

  3. Gardner E, O'Rahilly R. The early development of the knee joint in staged human embryos. J Anat. 1968;102(Pt 2):289–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Behr CT, Potter HG, Paletta GA Jr. The relationship of the femoral origin of the anterior cruciate ligament and the distal femoral physeal plate in the skeletally immature knee. An anatomic study. Am J Sports Med. 2001;29(6):781–7.

    Article  CAS  PubMed  Google Scholar 

  5. Ogden JA. Developmetal and maturation of the neuromusculoskeletal system. In: Morrissy RT, editor. Lovell and Winter’s Pediatric Orthopaedics. Philadelphia: Lippincott; 1990. p. 1–33.

    Google Scholar 

  6. Hinton RY, Sharma KM. Anterior cruciate ligament injuries. In:The pediatric and adolescent knee; Amsterdam, Netherlands. 2006. p. 317–76.

    Google Scholar 

  7. Ferretti M, Levicoff EA, Macpherson TA, Moreland MS, Cohen M, Fu FH. The fetal anterior cruciate ligament: an anatomic and histologic study. Arthroscopy. 2007;23(3):278–83.

    Article  PubMed  Google Scholar 

  8. Katz MP, Grogono BJ, Soper KC. The etiology and treatment of congenital dislocation of the knee. J Bone Joint Surg Br. 1967;49(1):112–20.

    CAS  PubMed  Google Scholar 

  9. Castro-Abril HA, Gutierrez ML, Garzon-Alvarado DA. Proximal femoral growth plate mechanical behavior: comparison between different developmental stages. Comput Biol Med. 2016;76:192–201.

    Article  PubMed  Google Scholar 

  10. Ballock RT, O'Keefe RJ. Physiology and pathophysiology of the growth plate. Birth Defects Res C Embryo Today. 2003;69(2):123–43.

    Article  CAS  PubMed  Google Scholar 

  11. Anderson M, Green WT, Messner MB. The classic. Growth and predictions of growth in the lower extremities by Margaret Anderson, M.S., William T. Green, M.D. and Marie Blail Messner, A.B. from the Journal of Bone and Joint Surgery, 45A:1. Clin Orthop Relat Res. 1963;1978(136):7–21.

    Google Scholar 

  12. Pritchett JW. Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Relat Res. 1992;275:274–9.

    Google Scholar 

  13. Ogden JA, Southwick WO. Osgood-Schlatter's disease and tibial tuberosity development. Clin Orthop Relat Res. 1976;116:180–9.

    Google Scholar 

  14. Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients. A preliminary report. J Bone Joint Surg Am. 2003;85-a(7):1255–63.

    Article  PubMed  Google Scholar 

  15. Anderson AF. Transepiphyseal replacement of the anterior cruciate ligament using quadruple hamstring grafts in skeletally immature patients. J Bone Joint Surg Am. 2004;86-A Suppl 1(Pt 2):201–9.

    Article  PubMed  Google Scholar 

  16. Murawski CD, van Eck CF, Irrgang JJ, Tashman S, Fu FH. Operative treatment of primary anterior cruciate ligament rupture in adults. J Bone Joint Surg Am. 2014;96(8):685–94.

    Article  PubMed  Google Scholar 

  17. Yasuda K, van Eck CF, Hoshino Y, Fu FH, Tashman S. Anatomic single- and double-bundle anterior cruciate ligament reconstruction, part 1: basic science. Am J Sports Med. 2011;39(8):1789–99.

    Article  PubMed  Google Scholar 

  18. Ferretti M, Ekdahl M, Shen W, Fu FH. Osseous landmarks of the femoral attachment of the anterior cruciate ligament: an anatomic study. Arthroscopy. 2007;23(11):1218–25.

    Article  PubMed  Google Scholar 

  19. Shea KG, Apel PJ, Pfeiffer RP, Showalter LD, Traughber PD. The tibial attachment of the anterior cruciate ligament in children and adolescents: analysis of magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2002;10(2):102–8.

    Article  PubMed  Google Scholar 

  20. Shea KG, Polousky JD, Jacobs JC, Ganley TJ. Anatomical dissection and CT imaging of the anterior cruciate and medial collateral ligaments in skeletally immature cadaver knees. American orthopaedic society for sports medicine annual conference. 2013.

    Google Scholar 

  21. Shea KG, Cannamela PC, Fabricant PD, Terhune EB, Polousky JD, Milewski MD, Ganley TJ, Anderson AF. Lateral Radiographic Landmarks For ACL and LCL Footprint Origins During All-Epiphyseal Femoral Drilling In Skeletally Immature Knees. The Journal of Bone & Joint Surgery. 2016;

    Google Scholar 

  22. Siebold R, Schuhmacher P, Fernandez F, et al. Flat midsubstance of the anterior cruciate ligament with tibial “C”-shaped insertion site. Knee Surg Sports Traumatol Arthrosc. 2015;23(11):3136–42.

    Article  PubMed  Google Scholar 

  23. Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J. Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 2006;14(3):204–13.

    Article  CAS  PubMed  Google Scholar 

  24. Harner CD, Baek GH, Vogrin TM, Carlin GJ, Kashiwaguchi S, Woo SL. Quantitative analysis of human cruciate ligament insertions. Arthroscopy. 1999;15(7):741–9.

    Article  CAS  PubMed  Google Scholar 

  25. Luites JW, Wymenga AB, Blankevoort L, Kooloos JG. Description of the attachment geometry of the anteromedial and posterolateral bundles of the ACL from arthroscopic perspective for anatomical tunnel placement. Knee Surg Sports Traumatol Arthrosc. 2007;15(12):1422–31.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Siebold R, Ellert T, Metz S, Metz J. Tibial insertions of the anteromedial and posterolateral bundles of the anterior cruciate ligament: morphometry, arthroscopic landmarks, and orientation model for bone tunnel placement. Arthroscopy. 2008;24(2):154–61.

    Article  PubMed  Google Scholar 

  27. Starman JS, Vanbeek C, Armfield DR, et al. Assessment of normal ACL double bundle anatomy in standard viewing planes by magnetic resonance imaging. Knee Surg Sports Traumatol Arthrosc. 2007;15(5):493–9.

    Article  PubMed  Google Scholar 

  28. Li G, DeFrate LE, Sun H, Gill TJ. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med. 2004;32(6):1415–20.

    Article  PubMed  Google Scholar 

  29. Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res. 1975;106:216–31.

    Article  Google Scholar 

  30. Kurosawa H, Yamakoshi K, Yasuda K, Sasaki T. Simultaneous measurement of changes in length of the cruciate ligaments during knee motion. Clin Orthop Relat Res. 1991;265:233–40.

    Google Scholar 

  31. Shifflett GD, Green DW, Widmann RF, Marx RG. Growth Arrest Following ACL Reconstruction With Hamstring Autograft in Skeletally Immature Patients: A Review of 4 Cases. J Pediatr Orthop. 2016;36(4):355–61.

    Article  PubMed  Google Scholar 

  32. Fabricant PD, Lakomkin N, Cruz AI, Spitzer E, Lawrence JTR, Marx RG. Early ACL reconstruction in children leads to less meniscal and articular cartilage damage when compared with conservative or delayed treatment. Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine. 2016;1(1):10–5.

    Article  Google Scholar 

  33. Lawrence JT, Argawal N, Ganley TJ. Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: is there harm in delay of treatment? Am J Sports Med. 2011;39(12):2582–7.

    Article  PubMed  Google Scholar 

  34. Vavken P, Murray MM. Treating anterior cruciate ligament tears in skeletally immature patients. Arthroscopy. 2011;27(5):704–16.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fabricant PD, Lakomkin N, Cruz AI, Spitzer E, Marx RG. ACL reconstruction in youth athletes results in an improved rate of return to athletic activity when compared with non-operative treatment: a systematic review of the literature. Journal of ISAKOS: Joint Disorders & Orthopaedic Sports Medicine; 2016.

    Google Scholar 

  36. Calvo R, Figueroa D, Gili F, et al. Transphyseal anterior cruciate ligament reconstruction in patients with open physes: 10-year follow-up study. Am J Sports Med. 2015;43(2):289–94.

    Article  PubMed  Google Scholar 

  37. Guzzanti V, Falciglia F, Stanitski CL. Physeal-sparing intraarticular anterior cruciate ligament reconstruction in preadolescents. Am J Sports Med. 2003;31(6):949–53.

    Article  PubMed  Google Scholar 

  38. Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. The Journal of bone and joint surgery American volume. 2005;87(11):2371–9.

    PubMed  Google Scholar 

  39. Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. Surgical technique. The Journal of bone and joint surgery. American volume. 2006;88 Suppl 1(Pt 2):283–93.

    Article  Google Scholar 

  40. Lawrence JT, Bowers AL, Belding J, Cody SR, Ganley TJ. All-epiphyseal anterior cruciate ligament reconstruction in skeletally immature patients. Clin Orthop Relat Res. 2010;468(7):1971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nawabi DH, Jones KJ, Lurie B, Potter HG, Green DW, Cordasco FA. All-inside, physeal-sparing anterior cruciate ligament reconstruction does not significantly compromise the physis in skeletally immature athletes: a postoperative physeal magnetic resonance imaging analysis. Am J Sports Med. 2014;42(12):2933–40.

    Article  PubMed  Google Scholar 

  42. Shea KG, Grimm NL, Belzer JS. Volumetric injury of the distal femoral physis during double-bundle ACL reconstruction in children: a three-dimensional study with use of magnetic resonance imaging. J Bone Joint Surg Am. 2011;93(11):1033–8.

    Article  PubMed  Google Scholar 

  43. Xerogeanes JW, Hammond KE, Todd DC. Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction: an MRI-based study. J Bone Joint Surg Am. 2012;94(3):268–76.

    Article  PubMed  Google Scholar 

  44. Magnussen RA, Lawrence JT, West RL, Toth AP, Taylor DC, Garrett WE. Graft size and patient age are predictors of early revision after anterior cruciate ligament reconstruction with hamstring autograft. Arthroscopy. 2012;28(4):526–31.

    Article  PubMed  Google Scholar 

  45. Cruz AI Jr, Fabricant PD, Seeley MA, Ganley TJ, Lawrence JT. Change in size of hamstring grafts during preparation for ACL reconstruction: effect of tension and circumferential compression on graft diameter. J Bone Joint Surg Am. 2016;98(6):484–9.

    Article  PubMed  Google Scholar 

  46. Kocher MS, Garg S, Micheli LJ. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J Bone Joint Surg Am. 2005;87(11):2371–9.

    PubMed  Google Scholar 

  47. Kocher MS, Mandiga R, Klingele K, Bley L, Micheli LJ. Anterior cruciate ligament injury versus tibial spine fracture in the skeletally immature knee: a comparison of skeletal maturation and notch width index. J Pediatr Orthop. 2004;24(2):185–8.

    Article  PubMed  Google Scholar 

  48. Micheli LJ, Rask B, Gerberg L. Anterior cruciate ligament reconstruction in patients who are prepubescent. Clin Orthop Relat Res. 1999;364:40–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin G. Shea M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Richmond, C.G., Cannamela, P.C., Ganley, T.J., Polousky, J.D., Anderson, A.F., Shea, K.G. (2018). Developmental Anatomy of the ACL and Knee. In: Parikh, S. (eds) The Pediatric Anterior Cruciate Ligament. Springer, Cham. https://doi.org/10.1007/978-3-319-64771-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64771-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64770-8

  • Online ISBN: 978-3-319-64771-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics