Influence of Bone Survivorship on Taxonomic Abundance Measures



Abundance indices are commonly used to test hypotheses formed under optimal foraging theory. Index values may be a reflection of foraging behavior, but analysts must first consider the influence of taphonomic processes that may vary across space, time, and taxa. Bone survivorship is expected to differ among taxa according to their nutritional value, bone density, how carcasses were processed, and their attractiveness to secondary consumers. Greater survivorship is expected for higher ranked resources when foraging efficiency declines due to increases in processing intensity that renders discarded bone less attractive to secondary scavengers. This in turn will potentially result in a greater number of specimens identified despite lower declines in large game hunting. I review spatial and temporal differences in bone attrition at Five Finger Ridge, a Fremont period (ca. AD 400–1300) site located in the eastern Great Basin, USA. Relative taxonomic abundance is largely explained by density-mediated destruction and cannot be taken as an accurate reflection of human behavior, such as hunting efficiency among households or across time at this particular site. This finding demonstrates the importance of accounting for variation in density-mediated destruction among multiple species before any human behavioral inferences are formed from taxonomic diversity measures.


Density-mediated destruction Taphonomy Species representation Faunal analysis Great Basin, USA 


  1. Bartram, L. E. (1993). Perspectives on skeletal part profiles and utility curves from eastern Kalahari ethnoarchaeology. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Center for Archaeological Investigations Occassional Paper 21 (pp. 115–137). Carbondale: Southern Illinois University.Google Scholar
  2. Bayham, F. E. (1979). Factors influencing the Archaic pattern of animal exploitation. Kiva, 44(2-3), 219–235.Google Scholar
  3. Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(02), 150–162.CrossRefGoogle Scholar
  4. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319(6056), 768–771.CrossRefGoogle Scholar
  5. Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic.Google Scholar
  6. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic.Google Scholar
  7. Bird, R. (1999). Cooperation and conflict: The behavioral ecology of the sexual division of labor. Evolutionary Anthropology, 8(2), 65–75.CrossRefGoogle Scholar
  8. Bird, D. W., & Bliege Bird, R. (2000). The ethnoarchaeology of juvenile foragers: Shellfishing strategies among Meriam children. Journal of Anthropological Archaeology, 19(4), 461–476.CrossRefGoogle Scholar
  9. Bird, D. W., & O’Connell, J. F. (2006). Behavioral ecology and archaeology. Journal of Archaeological Research, 14(2), 143–188.CrossRefGoogle Scholar
  10. Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.Google Scholar
  11. Broughton, J. M. (1994). Declines in mammalian foraging efficiency during the late Holocene, San Francisco Bay, California. Journal of Anthropological Archaeology, 13(4), 371–401.Google Scholar
  12. Broughton, J. M. (2002). Prey spatial structure and behavior affect archaeological tests of optimal foraging models: Examples from the Emeryville Shellmound vertebrate fauna. World Archaeology, 34(1), 60–83.CrossRefGoogle Scholar
  13. Broughton, J. M., Cannon, M. D., Bayham, F. E., & Byers, D. A. (2011). Prey body size and ranking in zooarchaeology: Theory, empirical evidence, and applications from the northern Great Basin. American Antiquity, 76(03), 403–428.CrossRefGoogle Scholar
  14. Cannon, M. D. (2001). Archaeofaunal relative abundance, sample size, and statistical methods. Journal of Archaeological Science, 28(2), 185–195.CrossRefGoogle Scholar
  15. Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20(3), 397–419.CrossRefGoogle Scholar
  16. Church, R. R., & Lyman, R. L. (2003). Small fragments make small differences in efficiency when rendering grease from fractured artiodactyl bones by boiling. Journal of Archaeological Science, 30(8), 1077–1084.CrossRefGoogle Scholar
  17. Elkin, D. C. (1995). Volume density of south American camelid skeletal parts. International Journal of Osteoarchaeology, 5(1), 29–37.CrossRefGoogle Scholar
  18. Fisher, J. L. (2010). Costly signaling and shifting faunal abundances at Five Finger Ridge, Utah. Unpublished Ph.D. dissertation. Seattle: University of Washington.Google Scholar
  19. Fisher, J. L. (2012). Shifting prehistoric abundances of leporids at Five Finger Ridge, a central Utah archaeological site. Western North American Naturalist, 72(1), 60–68.Google Scholar
  20. Fisher, J. L. (2015). Faunal quantification and the ascendance of hunting debate: Reevaluation of the data from southeastern California. American Antiquity, 80(04), 767–775.CrossRefGoogle Scholar
  21. Fisher, J. L., & Johnson, K. L. (2014). Culinary processing of jackrabbits at Antelope Cave, Arizona. Kiva, 79(3), 307–333.Google Scholar
  22. Fisher, J. L., & Valentine, B. (2013). Resource depression, climate change, and mountain sheep in the eastern Great Basin of western North America. Archaeological and Anthropological Sciences, 5(2), 145–157.CrossRefGoogle Scholar
  23. Grayson, D. K. (1989). Bone transport, bone destruction, and reverse utility curves. Journal of Archaeological Science, 16(6), 643–652.CrossRefGoogle Scholar
  24. Grayson, D. K. (2006). Holocene bison in the Great Basin, western USA. The Holocene, 16(6), 913–925.CrossRefGoogle Scholar
  25. Grayson, D. K., & Delpech, F. (1998). Changing diet breadth in the early upper Palaeolithic of southwestern France. Journal of Archaeological Science, 25(11), 1119–1129.CrossRefGoogle Scholar
  26. Grayson, D. K., & Frey, C. J. (2004). Measuring skeletal part representation in archaeological faunas. Journal of Taphonomy, 2(1), 27–42.Google Scholar
  27. Hawkes, K. (1996). Foraging differences between men and women: Behavioural ecology of the sexual division of labour. In J. Steele & S. Shennan (Eds.), The archaeology of human ancestry: Power, sex and tradition (pp. 283–305). London: Routledge.Google Scholar
  28. Hudson, J. (1993). The impacts of domestic dogs on bone in forager camps; or, the dog-gone bones. In J. Hudson (Ed.), From bones to behavior: Ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 301–323). Center for Archaeological Investigations Occassional Paper 21. Carbondale: Southern Illinois University.Google Scholar
  29. Hurlbut, S. A. (2000). The taphonomy of cannibalism: A review of anthropogenic bone modification in the American southwest. International Journal of Osteoarchaeology, 10(1), 4–26.CrossRefGoogle Scholar
  30. Janetski, J. C. (1997). Fremont hunting and resource intensification in the eastern Great Basin. Journal of Archaeological Science, 24(12), 1075–1088.CrossRefGoogle Scholar
  31. Janetski, J. C., Talbot, R. K., Newman, D. E., Richens, L. D., & Wilde, J. D. (2000). Clear Creek canyon archaeological project: Results and synthesis. Museum of Peoples and Cultures Occasional Papers no. 7. Provo, UT: Brigham Young University.Google Scholar
  32. Kaplan, H., Hill, K., Lancaster, J., & Hurtado, A. M. (2000). A theory of human life history evolution: Diet, intelligence, and longevity. Evolutionary Anthropology, 9(4), 156–185.CrossRefGoogle Scholar
  33. Kent, S. (1981). The dog: An archaeologist’s best friend or worst enemy—The spatial distribution of faunal remains. Journal of Field Archaeology, 8(3), 367–390.Google Scholar
  34. Kent, S. (1993). Variability in faunal assemblages—The influence of hunting skill, sharing, dogs, and mode of cooking on faunal remains at a sedentary Kalahari community. Journal of Anthropological Archaeology, 12(4), 323–385.CrossRefGoogle Scholar
  35. Kreutzer, L. A. (1992). Bison and deer bone-mineral densities—Comparisons and implications for the interpretation of archaeological faunas. Journal of Archaeological Science, 19(3), 271–294.CrossRefGoogle Scholar
  36. Lam, Y. M., & Pearson, O. M. (2004). The fallibility of bone density values and their use in archaeological analyses. Journal of Taphonomy, 2(2), 99–112.Google Scholar
  37. Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology, 14(3), 99–108.CrossRefGoogle Scholar
  38. Lam, Y. M., Chen, X. B., Marean, C. W., & Frey, C. J. (1998). Bone density and long bone representation in archaeological faunas: Comparing results from CT and photon densitometry. Journal of Archaeological Science, 25(6), 559–570.CrossRefGoogle Scholar
  39. Lam, Y. M., Chen, X. B., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64(02), 343–362.CrossRefGoogle Scholar
  40. Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. B. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30(12), 1701–1708.CrossRefGoogle Scholar
  41. Lupo, K. D. (1995). Hadza bone assemblages and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14(3), 288–314.CrossRefGoogle Scholar
  42. Lupo, K. D. (2006). What explains the carcass field processing and transport decisions of contemporary hunter-gatherers? Measures of economic anatomy and zooarchaeological skeletal part representation. Journal of Archaeological Method and Theory, 13(1), 19–66.CrossRefGoogle Scholar
  43. Lupo, K. D. (2007). Evolutionary foraging models in zooarchaeological analysis: Recent applications and future challenges. Journal of Archaeological Research, 15(2), 143–189.CrossRefGoogle Scholar
  44. Lupo, K. D., & Schmitt, D. N. (1997). Experiments in bone boiling: Nutritional returns and archaeological reflections. Anthropozoologica, 25–26, 137–144.Google Scholar
  45. Lupo, K. D., & Schmitt, D. N. (2004). Meat sharing and the archaeological record: A test of the show-off hypothesis among central African Bofi foragers. In G. M. Crothers (Ed.), Hunters and gatherers in theory and archaeology (pp. 241–260). Center for Archaeological Investigations Occassional Paper no. 31. Carbondale: Center for Archaeological Investigations, Southern Illinois University.Google Scholar
  46. Lyman, R. L. (1984). Bone-density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3(4), 259–299.CrossRefGoogle Scholar
  47. Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the Mgui. Journal of Archaeological Science, 12(3), 221–236.CrossRefGoogle Scholar
  48. Lyman, R. L. (1994). Vertebrate taphonomy. New York: Cambridge University Press.CrossRefGoogle Scholar
  49. Lyman, R. L. (2003). The influence of time averaging and space averaging on the application of foraging theory in zooarchaeology. Journal of Archaeological Science, 30(5), 595–610.CrossRefGoogle Scholar
  50. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. Lyman, R. L., Houghton, L. E., & Chambers, A. L. (1992). The effect of structural density on marmot skeletal part representation in archaeological sites. Journal of Archaeological Science, 19(5), 557–573.CrossRefGoogle Scholar
  52. Madsen, D. B. (1989). Exploring the Fremont. Salt Lake City: Utah Museum of Natural History.Google Scholar
  53. Madsen, D. B., & Simms, S. R. (1998). The Fremont complex: A behavioral perspective. Journal of World Prehistory, 12(3), 255–336.CrossRefGoogle Scholar
  54. Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56(04), 645–658.CrossRefGoogle Scholar
  55. Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19(1), 101–121.CrossRefGoogle Scholar
  56. Metcalfe, D., & Jones, K. T. (1988). A reconsideration of animal body-part utility indexes. American Antiquity, 53(03), 486–504.CrossRefGoogle Scholar
  57. Morgan, C. (2015). Is it intensification yet? Current archaeological perspectives on the evolution of hunter-gatherer economies. Journal of Archaeological Research, 23(2), 163–213.CrossRefGoogle Scholar
  58. Munson, P. J., & Garniewicz, R. C. (2003). Age-mediated survivorship of ungulate mandibles and teeth in canid-ravaged faunal assemblages. Journal of Archaeological Science, 30(4), 405–416.CrossRefGoogle Scholar
  59. Nagaoka, L. (2005). Declining foraging efficiency and moa carcass exploitation in southern New Zealand. Journal of Archaeological Science, 32(9), 1328–1338.CrossRefGoogle Scholar
  60. O’Connell, J. F., Hawkes, K., & Jones, N. B. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17(3), 301–316.CrossRefGoogle Scholar
  61. Olsen, S. L., & Shipman, P. (1988). Surface modification on bone: Trampling versus butchery. Journal of Archaeological Science, 15(5), 535–553.CrossRefGoogle Scholar
  62. Outram, A. K. (2002). Identifying dietary stress in marginal environments: Bone fats, optimal foraging theory and the seasonal round. In M. Mondini, S. Muñoz, & S. Wickler (Eds.), Colonisation, migration and marginal areas: A zooarchaeological approach (pp. 74–85). Oxford: Oxbow Books.Google Scholar
  63. Pavao, B., & Stahl, P. W. (1999). Structural density assays of leporid skeletal elements with implications for taphonomic, actualistic and archaeological research. Journal of Archaeological Science, 26(1), 53–66.CrossRefGoogle Scholar
  64. Phoca-Cosmetatou, N. (2005). Bone weathering and food procurement strategies: Assessing the reliability of our behavioural inferences. In T. P. O’Connor (Ed.), Biosphere to lithosphere: New studies in vertebrate taphonomy (pp. 135–145). Oxford: Oxbow Books.Google Scholar
  65. Rhode, D. (2000). Holocene vegetation history in the Bonneville Basin. In D. B. Madsen (Ed.), Late quaternary paleoecology in the Bonneville Basin (pp. 149–163). Salt Lake City: Utah Geological Survey.Google Scholar
  66. Shaffer, B. S. (1992). Quarter-inch screening: Understanding biases in recovery of vertebrate faunal remains. American Antiquity, 67(1), 129–136.CrossRefGoogle Scholar
  67. Shaffer, B. S., & Sanchez, J. L. J. (1994). Comparison of 1/8-inch-mesh and 1/4-inch-mesh recovery of controlled samples of small-to-medium-sized mammals. American Antiquity, 59(03), 525–530.CrossRefGoogle Scholar
  68. Smith, E. A., Bliege Bird, R. B., & Bird, D. W. (2003). The benefits of costly signaling: Meriam turtle hunters. Behavioral Ecology, 14(1), 116–126.CrossRefGoogle Scholar
  69. Speth, J. D. (2000). Boiling vs. baking and roasting: A taphonomic approach to the recognition of cooking techniques in small mammals. In P. Rowley-Conwy (Ed.), Animal bones, human societies (pp. 89–105). Oxford: Oxbow Books.Google Scholar
  70. Speth, J. D., & Spielmann, K. A. (1983). Energy-source, protein-metabolism, and hunter gatherer subsistence strategies. Journal of Anthropological Archaeology, 2(1), 1–31.CrossRefGoogle Scholar
  71. Stahl, P. W. (1999). Structural density of domesticated south American camelid skeletal elements and the archaeological investigation of prehistoric Andean charki. Journal of Archaeological Science, 26(11), 1347–1368.CrossRefGoogle Scholar
  72. Stiner, M. C. (2002). On in-situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29(9), 979–991.CrossRefGoogle Scholar
  73. Symmons, R. (2005). Bone density variation between similar animals and density variation in early life: Implications for future taphonomic analysis. In T. P. O’Connor (Ed.), Biosphere to lithosphere: New studies in vertebrate taphonomy (pp. 86–93). Oxford: Oxbow Books.Google Scholar
  74. Szuter, C. R., & Bayham, F. E. (1989). Sedentism and prehistoric animal procurement among desert horticulturalists of the north American southwest. In S. Farmer (Ed.), Farmers as hunters: The implications of sedentism (pp. 80–95). Cambridge: Cambridge University Press.Google Scholar
  75. Talbot, R. K., & Janetski, J. C. (2000). Use of space at five finger ridge. In J. C. Janetski, R. K. Talbot, D. E. Newman, L. D. Richens, & J. D. Wilde (Eds.), Clear Creek Canyon archaeological project: Results and synthesis (pp. 9–46). Museum of Peoples and Cultures Occasional Papers no. 7 . Provo, UT: Brigham Young University.Google Scholar
  76. Talbot, R. K., & Wilde, J. D. (1989). Giving form to the formative: Shifting settlement patterns in the eastern Great Basin and northern Colorado Plateau. Utah Archaeology, 2(1), 3–18.Google Scholar
  77. Talbot, R. K., Richens, L. D., Wilde, J. D., Janetski, J. C., & Newman, D. E. (1998). Archaeological surveys and limited excavations, Clear Creek Canyon, central Utah. Museum of Peoples and Cultures Occasional Papers no. 3. Provo, UT: Brigham Young University.Google Scholar
  78. Talbot, R. K., Richens, L. D., Wilde, J. D., Janetski, J. C., & Newman, D. E. (2000). Excavations at Five Finger Ridge, Clear Creek Canyon, central Utah. Museum of Peoples and Cultures Occasional Papers no. 5. Provo, UT: Brigham Young University.Google Scholar
  79. Turner, C. G., & Turner, J. A. (1999). Man corn: Cannibalism and violence in the prehistoric American Southwest. Salt Lake City: University of Utah Press.Google Scholar
  80. Ugan, A. (2005). Climate, bone density, and resource depression: What is driving variation in large and small game in Fremont archaeofaunas? Journal of Anthropological Archaeology, 24(3), 227–251.CrossRefGoogle Scholar
  81. Ugan, A. (2010). The effect of cooking on the survivorship of jackrabbit skeletons (Lepus californicus) presented to desert scavengers of the eastern Great Basin, North America. International Journal of Osteoarchaeology, 20(2), 214–226.Google Scholar
  82. Wandsnider, L. (1997). The roasted and the boiled: Food composition and heat treatment with special emphasis on pit-hearth cooking. Journal of Anthropological Archaeology, 16(1), 1–48.CrossRefGoogle Scholar
  83. White, T. D. (1992). Prehistoric cannibalism at Mancos 5MTUMR-2346. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  84. Wigand, P. E., & Rhode, D. (2002). Great Basin vegetation history and aquatic systems: The last 150,000 years. In R. Hershler, D. B. Madsen, & D. R. Currey (Eds.), Great Basin aquatic systems history (pp. 309–368). Smithsonian contributions to the earth sciences no. 33. Washington, DC: Smithsonian Institution Press.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of AnthropologyCalifornia State UniversitySacramentoUSA

Personalised recommendations