Skip to main content

Low-Survival Skeletal Elements Track Attrition, Not Carcass Transport Behavior in Quaternary Large Mammal Assemblages

  • Chapter
  • First Online:

Abstract

Zooarchaeological analyses of carcass transport behavior require methodologies that control for the effects of density-mediated attrition on skeletal element abundances. Taphonomic observations suggest that based on differences in bone structure and density, large mammal skeletal elements can be divided into a high-survival subset of skeletal elements that more accurately reflects what was originally deposited, and a low-survival subset that does not. In this chapter we explore the applicability of this model of bone survivorship across 43 Quaternary large mammal assemblages from Africa (n = 33) and Eurasia (n = 10). We demonstrate that attrition explains a substantial degree of variation in low-survival element abundances, with nearly all low-survival elements affected. Because attrition severely overprints any potential signature of differential bone transport by humans, it follows that only the high-survival elements of large mammals are suitable for making behavioral inferences from skeletal element abundances. This supports predictions made from actualistic taphonomic observations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe, Y. (2005). Hunting and butchery patterns of the Evenki in Northern Transbaikalia, Russia. Unpublished Ph.D. dissertation, Stony Brook University, Stony Brook, New York.

    Google Scholar 

  • Assefa, Z. (2006). Faunal remains from Porc-Epic: Paleoecological and zooarchaeological investigations from a middle stone age site in southeastern Ethiopia. Journal of Human Evolution, 51, 50–75.

    Article  Google Scholar 

  • Bartram, L. E. (1993). Perspectives on skeletal part profiles and utility curves from Eastern Kalahari ethnoarchaeology. In J. Hudson (Ed.), From bones to behavior (pp. 115–137). Carbondale: Center for Archaeological Investigations at Southern Illinois University.

    Google Scholar 

  • Bartram, L. E., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua Ethnoarchaeology, the Die Kelders middle stone age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26, 9–29.

    Google Scholar 

  • Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic.

    Google Scholar 

  • Binford, L. R., Mills, M. G. L., & Stone, N. M. (1988). Hyena scavenging behavior and its implications for interpretations of faunal assemblages from FLK22 (the Zinj Floor) at Olduvai Gorge. Journal of Anthropological Archaeology, 7, 99–135.

    Article  Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15, 483–502.

    Article  Google Scholar 

  • Blumenschine, R. J., & Madrigal, T. C. (1993). Variability in long bone marrow yields of East African ungulates and its zooarchaeological implications. Journal of Archaeological Science, 20, 555–587.

    Article  Google Scholar 

  • Blumenschine, R. J., & Marean, C. W. (1993). A carnivore’s view of archaeological bone assemblages. In J. Hudson (Ed.), From bones to behavior (pp. 273–300). Carbondale: Center for Archaeological Investigations at Southern Illinois University.

    Google Scholar 

  • Brain, C. K. (1981). The hunters or the hunted? An introduction to African cave taphonomy. Chicago: University of Chicago Press.

    Google Scholar 

  • Bunn, H. T., & Kroll, E. M. (1986). Systematic butchery by Plio-Pleistocene hominids at Olduvai Gorge, Tanzania. Current Anthropology, 27, 431–452.

    Article  Google Scholar 

  • Bunn, H. T., Bartram, L. E., & Kroll, E. M. (1988). Variability in bone assemblage formation from Hadza hunting, scavenging, and carcass processing. Journal of Anthropological Archaeology, 7, 412–457.

    Article  Google Scholar 

  • Carlson, K. J., & Pickering, T. R. (2004). Shape-adjusted bone mineral density measurements in baboons: Other factors explain primate skeletal element representation at Swartkrans. Journal of Archaeological Science, 31, 577–583.

    Article  Google Scholar 

  • Cleghorn, N. (2006). A zooarchaeological perspective on the Middle to Upper Paleolithic transition at Mezmaiskaya Cave, the Northern Caucasus, Russia. Unpublished Ph.D. dissertation, Stony Brook University, Stony Brook, New York.

    Google Scholar 

  • Cleghorn, N., & Marean, C. W. (2004). Distinguishing selective transport and in situ attrition: A critical review of analytical approaches. Journal of Taphonomy, 2, 43–67.

    Google Scholar 

  • Cleghorn, N., & Marean, C. W. (2007). The destruction of skeletal elements by carnivores: The growth of a general model for skeletal element destruction and survival in zooarchaeological assemblages. In T. R. Pickering, N. Toth, & K. Schick (Eds.), Breathing life into fossils: Taphonomic studies in honor of C.K. (Bob) Brain (pp. 37–66). Gosport: Stone Age Institute Press.

    Google Scholar 

  • Conard, N. J., Walker, S. J., & Kandel, A. W. (2008). How heating and cooling and wetting and drying can destroy dense faunal elements and lead to differential preservation. Palaeogeography Palaeoclimatology Palaeoecology, 266, 236–245.

    Article  Google Scholar 

  • Faith, J. T. (2007a). Changes in reindeer body part representation at Grotte XVI, Dordogne, France. Journal of Archaeological Science, 34, 2003–2011.

    Article  Google Scholar 

  • Faith, J. T. (2007b). Sources of variation in carnivore tooth-mark frequencies in a modern spotted hyena (Crocuta crocuta) den assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 34, 1601–1609.

    Article  Google Scholar 

  • Faith, J. T. (2013). Taphonomic and paleoecological change in the large mammal sequence from Boomplaas Cave, Western Cape, South Africa. Journal of Human Evolution, 65, 715–730.

    Article  Google Scholar 

  • Faith, J. T., & Gordon, A. D. (2007). Skeletal element abundances in archaeofaunal assemblages: Economic utility, sample size, and assessment of carcass transport strategies. Journal of Archaeological Science, 34, 872–882.

    Article  Google Scholar 

  • Faith, J. T., Marean, C. W., & Behrensmeyer, A. K. (2007). Carnivore competition, bone destruction, and bone density. Journal of Archaeological Science, 34, 2025–2034.

    Article  Google Scholar 

  • Faith, J. T., Domínguez-Rodrigo, M., & Gordon, A. D. (2009). Long-distance carcass transport at Olduvai Gorge? A quantitative examination of Bed I skeletal element abundances. Journal of Human Evolution, 56, 247–256.

    Article  Google Scholar 

  • Gidna, A., Domínguez-Rodrigo, M., & Pickering, T. R. (2015). Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. Journal of Archaeological Science: Reports, 2, 302–309.

    Article  Google Scholar 

  • Grayson, D. K., & Delpech, F. (2003). Ungulates and the middle-to-upper Paleolithic transition at Grotte XVI (Dordogne, France). Journal of Archaeological Science, 30, 1633–1648.

    Article  Google Scholar 

  • Hill, A. (1989). Bone modification by modern spotted hyenas. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 169–178). Orono, ME: Center for the Study of the First Americans.

    Google Scholar 

  • Lam, Y. M., & Pearson, O. M. (2005). Bone density studies and the interpretation of the faunal record. Evolutionary Anthropology, 14, 99–108.

    Article  Google Scholar 

  • Lam, Y. M., Chen, X., & Pearson, O. M. (1999). Intertaxonomic variability in patterns of bone density and the differential representation of bovid, cervid, and equid elements in the archaeological record. American Antiquity, 64, 343–362.

    Article  Google Scholar 

  • Lam, Y. M., Pearson, O. M., Marean, C. W., & Chen, X. (2003). Bone density studies in zooarchaeology. Journal of Archaeological Science, 30, 1701–1708.

    Article  Google Scholar 

  • Lupo, K. D. (1995). Hadza bone assemblage and hyena attrition: An ethnographic example of the influence of cooking and mode of discard on the intensity of scavenger ravaging. Journal of Anthropological Archaeology, 14, 288–314.

    Article  Google Scholar 

  • Lupo, K. D. (2001). Archaeological skeletal part profiles and differential transport: An ethnoarchaeological example from Hadza bone assemblages. Journal of Anthropological Archaeology, 20, 361–378.

    Article  Google Scholar 

  • Lupo, K. D., & Schmitt, D. N. (1997). Experiments in bone boiling: Nutritional returns and archaeological reflections. Anthropozoologica, 25(26), 137–144.

    Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.

    Article  Google Scholar 

  • Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12, 221–236.

    Article  Google Scholar 

  • Lyman, R. L. (1993). Density-mediated attrition of bone assemblages: New insights. In J. Hudson (Ed.), From bones to behavior (pp. 324–341). Carbondale: Center for Archaeological Investigations at Southern Illinois University.

    Google Scholar 

  • Lyman, R. L. (1994). Vertebrate taphonomy. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Marean, C. W. (1991). Measuring the postdepositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18, 677–694.

    Article  Google Scholar 

  • Marean, C. W., & Cleghorn, N. (2003). Large mammal skeletal element transport: Applying foraging theory in a complex taphonomic system. Journal of Taphonomy, 1, 15–42.

    Google Scholar 

  • Marean, C. W., & Frey, C. J. (1997). Animal bones from caves to cities: Reverse utility curves as methodological artifacts. American Antiquity, 62, 698–711.

    Article  Google Scholar 

  • Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave: Behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, S79–S113.

    Article  Google Scholar 

  • Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity, 56, 645–658.

    Article  Google Scholar 

  • Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19, 101–121.

    Article  Google Scholar 

  • Marean, C. W., Abe, Y., Frey, C. J., & Randall, R. C. (2000). Zooarchaeological and taphonomic analysis of the Die Kelders Cave 1 layers 10 and 11 middle stone age larger mammal fauna. Journal of Human Evolution, 38, 197–233.

    Article  Google Scholar 

  • Marean, C. W., Abe, Y., Nilssen, P. J., & Stone, E. C. (2001). Estimating the minimum number of skeletal elements (MNE) in zooarchaeology: A review and new image-analysis and GIS approach. American Antiquity, 66, 333–348.

    Article  Google Scholar 

  • Marean, C. W., Domínguez-Rodrigo, M., & Pickering, T. R. (2004). Skeletal element equifinality in zooarchaeology begins with method: The evolution and status of the “shaft critique”. Journal of Taphonomy, 2, 69–98.

    Google Scholar 

  • Morin, E. (2004). Late pleistocene population interactions in western europe and modern human origins: New insights based on the faunal remains from Saint-Césaire, Southwestern France. Unpublished Ph.D. dissertation, University of Michigan, Ann Arbor.

    Google Scholar 

  • O’Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44, 113–161.

    Article  Google Scholar 

  • O’Connell, J. F., Hawkes, K., & Blurton-Jones, N. (1990). Reanalysis of large mammal body part transport among the Hadza. Journal of Archaeological Science, 17, 301–316.

    Article  Google Scholar 

  • Pickering, T. R., Marean, C. W., & Domínguez-Rodrigo, M. (2003). Importance of limb bone shaft fragments in zooarchaeology: A response to “On in situ attrition and vertebrate body part profiles” (2002), by MC. Stiner. Journal of Archaeological Science, 30, 1469–1482.

    Article  Google Scholar 

  • Rogers, A. R. (2000). Analysis of bone counts by maximum likelihood. Journal of Archaeological Science, 27, 111–125.

    Article  Google Scholar 

  • Saladié, P., Huguet, R., Díez, C., Rodríguez-Hidalgo, A., Cáceres, I., Vallverdú, J., et al. (2011). Carcass transport decisions in Homo antecessor subsistence strategies. Journal of Human Evolution, 61, 425–446.

    Article  Google Scholar 

  • Schoville, B. J., & Otárola-Castillo, E. (2014). A model of hunter-gatherer skeletal element transport: The effect of prey body size, carriers, and distance. Journal of Human Evolution, 73, 1–14.

    Article  Google Scholar 

  • Stahl, P. W. (1999). Structural density of domesticated South American camelid skeletal elements and the archaeological investigation of prehistoric Andean Ch’arki. Journal of Archaeological Science, 26, 1347–1368.

    Article  Google Scholar 

  • Stiner, M. C. (2002). On in situ attrition and vertebrate body part profiles. Journal of Archaeological Science, 29, 979–991.

    Article  Google Scholar 

  • Thompson, J. C. (2010). Taphonomic analysis of the middle stone age faunal assemblage from Pinnacle Point Cave 13B, Western Cape, South Africa. Journal of Human Evolution, 59, 321–339.

    Article  Google Scholar 

  • Thompson, J. C., & Henshilwood, C. S. (2011). Taphonomic analysis of the middle stone age larger mammal faunal assemblage from Blombos Cave, southern Cape, South Africa. Journal of Human Evolution, 60, 746–767.

    Article  Google Scholar 

  • Thompson, J. C., & Lee-Gorishti, Y. (2007). Carnivore bone portion choice in modern experimental boiled bone assemblages. Journal of Taphonomy, 5, 121–135.

    Google Scholar 

  • Thompson, J. C., & Marean, C. W. (2009). Using image analysis to quantify relative degrees of density-mediated attrition in middle stone age archaeofaunas. Society for Archaeological Sciences Bulletin, 32(2), 18–23.

    Google Scholar 

  • Villa, P., & Mahieu, E. (1991). Breakage patterns of human long bones. Journal of Human Evolution, 21, 27–48.

    Article  Google Scholar 

  • White, T. E. (1952). Observations on the butchering technique of some aboriginal peoples: No. 1. American Antiquity, 4, 337–338.

    Article  Google Scholar 

  • Yellen, J. E. (1977). Cultural patterning in faunal remains: Evidence from the !Kung bushmen. In D. Ingersoll, J. E. Yellen, & W. Macdonald (Eds.), Experimental archeology (pp. 271–331). New York: Columbia University Press.

    Google Scholar 

  • Yeshurun, R., Bar-Oz, G., & Weinstein-Evron, M. (2007). Modern hunting behavior in the early Middle Paleolithic: Faunal remains from Misliya Cave, Mount Carmel, Israel. Journal of Human Evolution, 53, 656–677.

    Article  Google Scholar 

  • Yravedra, J., & Domínguez-Rodrigo, M. (2009). The shaft-based methodological approach to the quanitification of limb bones and its relevance to understanding hominid subsistence in the Pleistocene: Application to four Palaeolithic sites. Journal of Quaternary Science, 24, 85–96.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Ali Murad Büyüm and Jennifer Gutierrez, who assisted in processing MNE counts for the BBC and PP13B assemblages. We thank Christina Giovas for inviting us to contribute this chapter and the editors and anonymous reviewers for their helpful feedback. JTF is supported by an Australian Research Council Discovery Early Career Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tyler Faith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Faith, J.T., Thompson, J.C. (2018). Low-Survival Skeletal Elements Track Attrition, Not Carcass Transport Behavior in Quaternary Large Mammal Assemblages. In: Giovas, C., LeFebvre, M. (eds) Zooarchaeology in Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-64763-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64763-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64761-6

  • Online ISBN: 978-3-319-64763-0

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics