Impact of Analytic Protocols on Archaeofish Abundance, Richness, and Similarity: A Caribbean-Pacific Crossover Study



Standing in notable contrast to the practice of other regions, past archaeological fish studies in the tropical Pacific and New Zealand have commonly restricted analysis to a set of five paired cranial elements and “special bones”. This method has been critiqued for reducing taxonomic richness and altering relative abundances, with consequences for fishing, dietary, and paleoecological reconstructions. Here, I assess whether these issues hold true for a Caribbean fish assemblage from the prehistoric site of Sabazan (AD 400–1400), Carriacou, Grenada. Analytic results obtained using the restricted element method are compared to those based on analysis of all potentially diagnostic bones. Building on previous critiques, I investigate the significance of observed discrepancies in relation to sample size effects. Tests of statistical significance and a similarity index are employed to evaluate and quantify the impact of the restricted analytic method for different screen-size fractions (6.4 and 1.6 mm) and quantitative units (NISP and MNI). Results show varying effects in the interaction of these variables, but indicate overall that the restricted element method does not provide taxonomic richness and abundance information comparable to that of an expanded analytic approach. I consider the larger implications of these findings for the identification of certain taxa, such as tunas (Scombridae), herrings (Clupeidae), and jacks and scads (Carangidae), the detection of net fishing, and the exploitation of pelagic fisheries. Despite the unreliability of this method, I conclude that there is a role for expedient methods, provided these are carefully evaluated prior to implementation.


Zooarchaeology Ichthyoarchaeology Five cranial bones Special bones Polynesia West Indies Screen size Pelagic fishing 



This study is based on research funded by the U.S. National Science Foundation (Grant No. SBE-0715388), University of Washington Quaternary Research Center, and University of Washington Department of Anthropology and supported by the Carriacou Archaeological Field Project and its field school students. Thanks are due to Michelle LeFebvre and Aaron Poteate whose helpful comments improved an earlier draft of this essay. I am also grateful to Matthew Campbell for his manuscript suggestions and for reminding me of the very real restrictions that budgets place on what zooarchaeologists working in the cultural resource management sector are permitted to analyze. Lastly, I thank the two anonymous peer reviewers whose comments helped improve this chapter.


  1. Albarella, U. (2016). Defining bone movement in archaeological stratigraphy: A plea for clarity. Archaeological and Anthropological Sciences, 8(2), 353–358.CrossRefGoogle Scholar
  2. Anderson, A. (1973). Archaeology and behaviour: Prehistoric subsistence behaviour at Black Rocks Peninsula, Palliser Bay. Unpublished master’s thesis, University of Otago, Dunedin.Google Scholar
  3. Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, C. E. (2013). Other people’s data: A demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 20, 663–681.CrossRefGoogle Scholar
  4. Blumenschine, R. J., Marean, C. W., & Capaldo, S. D. (1996). Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of Archaeological Science, 23(4), 493–507.CrossRefGoogle Scholar
  5. Bullen, R. P., & Bullen, A. K. (1972). Archaeological investigations on St. Vincent and the Grenadines, West Indies. Orlando, FL: Bryant Foundation.Google Scholar
  6. Butler, V. L. (1993). Natural versus cultural salmonid remains: Origin of the Dalles Roadcut bones, Columbia River, Oregon, USA. Journal of Archaeological Science, 20(1), 1–24.CrossRefGoogle Scholar
  7. Butler, V. L. (1994). Fish feeding behaviour and fish capture: The case for variation in Lapita fishing strategies. Archaeology in Oceania, 29, 81–90.CrossRefGoogle Scholar
  8. Butler, V. L., & Chatters, J. C. (1994). The role of bone density in structuring prehistoric salmon bone assemblages. Journal of Archaeological Science, 21, 413–424.CrossRefGoogle Scholar
  9. Butler, V. L., & Schroeder, R. A. (1998). Do digestive processes leave diagnostic traces on fish bones? Journal of Archaeological Science, 25(10), 957–971.CrossRefGoogle Scholar
  10. Campbell, M. (2016). Body part representation and the extended analysis of New Zealand fishbone. Archaeology in Oceania, 51, 18–30.CrossRefGoogle Scholar
  11. Cannon, D. Y. (1987). Marine fish osteology: A manual for archaeologists. Simon Fraser University Publication 18, Department of Archaeology. Burnaby: Simon Fraser University.Google Scholar
  12. Cannon, M. D. (n.d.). Chi-square and Cochran’s calculator.Microsoft Excel macro file. Retrieved September 2016 from
  13. Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.CrossRefGoogle Scholar
  14. Carder, N., Reitz, E. J., & Crock, J. G. (2007). Fish communities and populations during the post-Saladoid period (AD 600/800-1500), Anguilla, Lesser Antilles. Journal of Archaeological Science, 34, 588–599.CrossRefGoogle Scholar
  15. Carpenter, K. E. (Ed.). (2002). The living marine resources of the Western Central Atlantic (Vols. 2 and 3). FAO Species Identification Guide for Fishery Purposes and American Society of Ichthyologists and Herpetologists Special Publication No. 5. Rome: Food and Agricultural Organization of the United Nations.Google Scholar
  16. Casteel, R. W. (1976). Fish remains in archaeological and paleo-environmental studies. New York: Academic.Google Scholar
  17. Casteel, R. W., & Grayson, D. K. (1977). Terminological problems in quantitative faunal analysis. World Archaeology, 9, 235–242.CrossRefGoogle Scholar
  18. Collette, B. B. (2002). Scombridae: Mackerels and tunas. In K. Carpenter (Ed.), The living marine resources of the Western Central Atlantic (Vol. 3), bony fishes part 2 (Opistognathidae to Molidae), sea turtles and marine mammals. American Society of Ichthyologists and Herpetologists Special Publication No. 5 (pp. 1836–1857). Rome: Food and Agriculture Organization of the United Nations.Google Scholar
  19. Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9, 35–47.Google Scholar
  20. Driver, J. C. (2011a). Identification, classification and zooarchaeology (reprint). Ethnobiology Letters, 2, 19–29.Google Scholar
  21. Driver, J. C. (2011b). Twenty years after identification, classification and zooarchaeology. Ethnobiology Letters, 2, 36–39.CrossRefGoogle Scholar
  22. Dye, T., & Longenecker, K. R. (2004). Manual of Hawaiian fish remains identification based on the skeletal reference collection of Alan C. Ziegler and including otoliths. Society for Hawaiian Archaeology Special Publication 1.Google Scholar
  23. Fitzpatrick, S. M., & Giovas, C. M. (2011). New radiocarbon dates for the Grenadine Islands (West Indies). Radiocarbon, 53(3), 451–460.CrossRefGoogle Scholar
  24. Fitzpatrick, S. M., & Kataoka, O. (2005). Prehistoric fishing in Palau, Micronesia: Evidence from the northern Rock Islands. Archaeology in Oceania, 40, 1–13.CrossRefGoogle Scholar
  25. Fitzpatrick, S. M., Kappers, M., Kaye, Q., Giovas, C. M., LeFebvre, M. J., Harris, M. H., et al. (2009). Precolumbian settlement of Carriacou, West Indies. Journal of Field Archaeology, 34, 247–266.CrossRefGoogle Scholar
  26. Fitzpatrick, S. M., Kaye, Q., Kappers, M., & Giovas, C. M. 2014. A decade of archaeological research on Carriacou, Grenadine Islands, West Indies. Caribbean Journal of Science 48(2–3), 151–161.Google Scholar
  27. Fraser, K. L. (2001). Variation in tuna fish catches in Pacific prehistory. International Journal of Osteoarchaeology, 11, 127–135.CrossRefGoogle Scholar
  28. Gabriel, S., Prista, N., & Costa, M. J. (2012). Estimating meagre (Argyrosomus regius) size from otoliths and vertebrae. Journal of Archaeological Science, 39, 2859–2865.CrossRefGoogle Scholar
  29. Gilbert, A. S., Singer, B. H., & Perkins, D. (1981). Quantification experiments on computer-simulated faunal collections. Ossa, 8, 79–94.Google Scholar
  30. Giovas, C. M. (2009). The shell game: Analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 36, 1557–1564.CrossRefGoogle Scholar
  31. Giovas, C. M. (2013). Foraging variability in the prehistoric Caribbean: Multiple foraging optima, resource use, and anthropogenic impacts on Carriacou, Grenada. Unpublished Ph.D. dissertation, University of Washington, Seattle.Google Scholar
  32. Giovas, C. M. (2016a). Though she be but little: Resource resilience, Amerindian foraging, and long-term adaptive strategies in the Grenadines, West Indies. The Journal of Island and Coastal Archaeology, 11, 238–263.CrossRefGoogle Scholar
  33. Giovas, C. M. (2016b). Pre-Columbian Amerindian lifeways at the Sabazan site, Carriacou West Indies. Journal of Island and Coastal Archaeology. doi:10.1080/15564894.2016.1229702.Google Scholar
  34. Giovas, C. M., Lambrides, A. B. J., Fitzpatrick, S. M., & Kataoka, O. (2017). Reconstructing prehistoric fishing zones in Palau, Micronesia using fish remains: A blind test of interanalyst correspondence. Archaeology in Oceania, 52(1), 45–61.CrossRefGoogle Scholar
  35. Gobalet, K. W. (2001). A critique of faunal analysis: Inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.CrossRefGoogle Scholar
  36. Gobalet, K. W. (2005). Comment on “Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia” by Vale and Gargett. Journal of Archaeological Science, 32, 643–645.CrossRefGoogle Scholar
  37. Gordon, A. E. (1993). Screen size and differential faunal recovery: A Hawaiian example. Journal of Field Archaeology, 20(4), 453–460.Google Scholar
  38. Grayson, D. K. (1984). Quantitative zooarchaeology: Topics in the analysis of archaeological faunas. New York: Academic.Google Scholar
  39. Grouard, S. (2013). Chasses, pêches et captures des faunes vertébrées et crustacées des occupations côtieres céramiques récentes du sud dela Martinique (Saladoïde récent, Vè siècle ap. J.-C.—Suazoïde récent XVè ap. J.C.) In B. Bérard (Ed.), Martinique, terre amérindienne: Une approche pluridisciplinaire (pp. 115–161). Leiden: Sidestone Press.Google Scholar
  40. Hoffman, B. W., Czederpiltz, J. M., & Partlow, M. A. (2000). Heads or tails: The zooarchaeology of Aleut salmon storage on Unimak Island, Alaska. Journal of Archaeological Science, 27(8), 699–708.CrossRefGoogle Scholar
  41. James, S. R. (1997). Methodological issues concerning screen size recovery rates and their effects on archaeofaunal interpretations. Journal of Archaeological Science, 24, 385–397.CrossRefGoogle Scholar
  42. Jones, S. (2009). A long-term perspective on biodiversity and marine resource exploitation in Fiji’s Lau Group. Pacific Science, 63(4), 617–648.CrossRefGoogle Scholar
  43. Kaye, Q. P. (2003). A field survey of the island of Carriacou, West Indies. Papers from the Institute of Archaeology, 14, 129–135.CrossRefGoogle Scholar
  44. Kaye, Q. P., Fitzpatrick, S. M., Harris, M. H., & Kappers, M. (2011). Bowls and burials—An update from Grand Bay, Carriacou, West Indies: May-June 2011. Papers from the Institute of Archaeology, 21, 91–100.Google Scholar
  45. Keegan, W. F. (1986). The ecology of Lucayan Arawak fishing practices. American Antiquity, 51, 816–825.CrossRefGoogle Scholar
  46. Keegan, W. F., Fitzpatrick, S. M., Sullivan-Sealy, K., & LeFebvre, M. J. (2008). The role of small islands in marine subsistence strategies: Case studies from the Caribbean. Human Ecology, 36, 635–654.CrossRefGoogle Scholar
  47. Kirch, P., Conte, E., Sharp, W., & Nickelsen, C. (2010). The Onemea Site (Taravai Island, Mangareva) and the human colonization of southeastern Polynesia. Archaeology in Oceania, 45, 66–79.CrossRefGoogle Scholar
  48. Krigbaum, J., Fitzpatrick, S. M., & Bankaitis, J. (2013). Human paleodiet at Grand Bay, Carriacou, Lesser Antilles. Journal of Island and Coastal Archaeology, 8(2), 210–227.CrossRefGoogle Scholar
  49. Lambrides, A. B. J., & Weisler, M. I. (2013). Assessing protocols for identifying Pacific island archaeological fish remains: The contribution of vertebrae. International Journal of Osteoarchaeology, 25(6), 838–848. doi:10.1002/oa.2354.Google Scholar
  50. Lambrides, A. B. J., & Weisler, M. I. (2015). Applications of vertebral morphometrics in Pacific Island archaeological fishing studies. Archaeology in Oceania, 50(2), 53–70.CrossRefGoogle Scholar
  51. Lambrides, A. B. J., & Weisler, M. I. (2016). Pacific islands ichthyoarchaeology: Implications for the development of prehistoric fishing studies and global sustainability. Journal of Archaeological Research, 24(3), 275–324.CrossRefGoogle Scholar
  52. Leach, B. F. (1976). Prehistoric communities in Palliser Bay, New Zealand. Unpublished Ph.D. dissertation, University of Otago, Dunedin.Google Scholar
  53. Leach, B. F. (1986). Method for the analysis of Pacific island fishbone assemblages and an associated database management system. Journal of Archaeological Science, 13, 147–159.CrossRefGoogle Scholar
  54. Leach, B. F. (1997). A guide to the identification of fish remains from New Zealand archaeological sites. New Zealand Journal of Archaeology Special Publication. Wellington: New Zealand Journal of Archaeology.Google Scholar
  55. LeFebvre, M. (2007). Zooarchaeological analysis of prehistoric vertebrate exploitation at the Grand Bay site, Carriacou, West Indies. Coral Reefs, 26, 931–944.CrossRefGoogle Scholar
  56. Lepiskaar, J. (1983). Osteologia I Pisces. Göteberg.Google Scholar
  57. Lubinski, P. (1996). Fish heads, fish heads: An experiment on differential bone preservation in a salmonid fish. Journal of Archaeological Science, 23(2), 175–181.CrossRefGoogle Scholar
  58. Lyman, R. L. (1994). Quantitative units and terminology in zooarchaeology. American Antiquity, 59(1), 36–71.CrossRefGoogle Scholar
  59. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  60. Lyman, R. L., & Ames, K. M. (2004). Sampling to redundancy in zooarchaeology: Lessons from the Portland Basin, Northwestern Oregon and Southwestern Washington. Journal of Ethnobiology, 24(2), 329–346.Google Scholar
  61. Magurran, A. (1988). Ecological diversity and its measurement. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  62. Magurran, A. (2004). Measuring biological diversity. Malden, MA: Blackwell.Google Scholar
  63. Masse, W. (1989). The archaeology and ecology of fishing in the Belau Islands, Micronesia. Unpublished Ph.D. dissertation, Southern Illinois University, Carbondale.Google Scholar
  64. McKechnie, I., Lepofsky, D., Moss, M. L., Butler, V. L., Orchard, T. J., Coupland, G., et al. (2014). Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proceedings of the National Academy of Sciences, 111(9), E807–E816.CrossRefGoogle Scholar
  65. Morrison, A. E., & Addison, D. J. (2008). Assessing the role of climate change and human predation on marine resources at the Fatu-ma-Futi site, Tutuila Island, American Samoa: An agent based model. Archaeology in Oceania, 43(1), 22–34.CrossRefGoogle Scholar
  66. Nagaoka, L. (1994). Differential recovery of Pacific Island fish remains: Evidence from the Moturakau Rockshelter, Aitutaki, Cook Islands. Asian Perspectives, 33(1), 1–17.Google Scholar
  67. Nagaoka, L. (2005). Differential recovery of Pacific Island fish remains. Journal of Archaeological Science, 32, 941–955.CrossRefGoogle Scholar
  68. Newsom, L. A., & Wing, E. S. (2004). On land and sea: Native American uses of biological resources in the West Indies. Tuscaloosa, AL: University of Alabama Press.Google Scholar
  69. Nichol, R. K., & Wild, C. J. (1984). “Numbers of individuals” in faunal analysis: The decay of fish bone in archaeological sites. Journal of Archaeological Science, 11, 35–51.Google Scholar
  70. O’Connor, S., Ono, R., & Clarkson, C. (2011). Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science, 334, 1117–1121.CrossRefGoogle Scholar
  71. Ono, R., & Clark, G. (2012). A 2500-year record of marine resource use on Ulong Island, Republic of Palau. International Journal of Osteoarchaeology, 22(6), 637–654.CrossRefGoogle Scholar
  72. Ono, R., & Intoh, M. (2011). Island of pelagic fishermen: Temporal changes in prehistoric fishing on Fais, Micronesia. Journal of Island and Coastal Archaeology, 6(2), 255–286.CrossRefGoogle Scholar
  73. Page, L. M., Espinosa-Perez, H., Findley, L. T., Gilbert, C. R. Lea, R. N., Mandrake, N. E. et al. (2013). Common and scientific names of fishes from the United States, Canada, and Mexico (7th ed.). American Fisheries Society Special Publication 34. Bethesda, MD: American Fisheries Society.Google Scholar
  74. Peres, T. M. (2010). Methodological issues in zooarchaeology. In A. Van Derwarker & T. M. Peres (Eds.), Integrating zooarchaeology and paleoethnobotany: A consideration of issues, methods, and cases (pp. 15–36). New York: Springer.CrossRefGoogle Scholar
  75. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  76. Smith, C. L. (1997). Field guide to tropical marine fishes of the Caribbean, the Gulf of Mexico, Florida, the Bahamas, and Bermuda. New York: Knopf.Google Scholar
  77. Steadman, D. W., & Jones, S. (2006). Long-term trends in prehistoric fishing and hunting on Tobago, West Indies. Latin American Antiquity, 17(3), 316–334.CrossRefGoogle Scholar
  78. Szpak, P. (2011). Fish bone chemistry and ultrastructure: Implications for taphonomy and stable isotope analysis. Journal of Archaeological Science, 38(12), 3358–3372.CrossRefGoogle Scholar
  79. Taquet, M., Reynal, L., Laurans, M., & Lagin, A. (2002). Blackfin tuna (Thunnus atlanticus) fishing around FADs in Martinique (French West Indies). Aquatic Living Resources, 13, 259–262.CrossRefGoogle Scholar
  80. Tupper, M., Tan, M. K., Tan, S. L., Radius, M. J., & Abdullah, S. (2013). ReefBase: A global information system on coral reefs. Retrieved November 7, 2014 from
  81. Vale, D., & Gargett, R. H. (2002). Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia. Journal of Archaeological Science, 29, 57–63.CrossRefGoogle Scholar
  82. Vogel, Y. (2005). Ika. Unpublished M.A. thesis, University of Otago, Dunedin.Google Scholar
  83. Vogel, Y., & Anderson, A. J. (2012). Prehistoric fishing on Rapa Island. In A. J. Anderson & D. J. Kennett (Eds.), Taking the high ground: The archaeology of Rapa, a fortified island in remote Polynesia (pp. 115–133). Canberra: ANU E Press.Google Scholar
  84. Walter, R. (1998). Anai'o: The archaeology of a fourteenth century Polynesian community in the Cook Islands. New Zealand Archaeological Association Monograph 22. Auckland: New Zealand Archaeological Association.Google Scholar
  85. Walter, R., & Anderson, A. (2001). Fishbone from the Emily Bay settlement site, Norfolk Island. Records of the Australian Museum, Supplement, 27, 101–108.Google Scholar
  86. Weisler, M. (1993). The importance of fish otoliths in Pacific Island archaeofaunal analysis. New Zealand Journal of Archaeology, 15, 131–159.Google Scholar
  87. Weisler, M. I., & Green, R. C. (2013). Mangareva fishing strategies in regional context: An analysis of fish bones from five sites excavated in 1959. Journal of Pacific Archaeology, 4(1), 73–89.Google Scholar
  88. Weisler, M. I., Bollt, R., & Findlater, A. (2010). Prehistoric fishing strategies on the “makatea” island of Rurutu. Archaeology in Oceania, 45(3), 130–143.CrossRefGoogle Scholar
  89. Westneat, M. W., & Alfaro, M. E. (2005). Phylogenetic relationships and evolutionary history of the reef fish family Labridae. Molecular Phylogenetics and Evolution, 36, 370–390.CrossRefGoogle Scholar
  90. Westneat, M. W., Alfaro, M. E., Wainwright, P. C., Bellwood, D. R., Grubich, J. R., Fessler, J. L., et al. (2005). Local phylogenetic divergence and global evolutionary convergence of skull function in reef fishes of the family Labridae. Proceedings of the Royal Society of London B: Biological Sciences, 272(1567), 993–1000.CrossRefGoogle Scholar
  91. Wheeler, A., & Jones, A. K. G. (2009). Fishes (1st ed., digital reprint). Cambridge: Cambridge University Press.Google Scholar
  92. Whyte, T. R., Berman, M. J., & Gnivecki, P. L. (2005). Vertebrate archaeofaunal remains from the Pigeon Creek site, San Salvador Island, the Bahamas. In S. D. Buckner & T. A. McGrath (Eds.), Proceedings of the tenth symposium on the natural history of the Bahamas (pp. 165–177). San Salvador: Gerace Research Center.Google Scholar
  93. Wing, E. S., & Wing, S. R. (2001). Prehistoric fisheries in the Caribbean. Coral Reefs, 20, 1–8.CrossRefGoogle Scholar
  94. Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20(3), 381–396.CrossRefGoogle Scholar
  95. Zohar, I., & Belmaker, M. (2005). Size does matter: Methodological comments on sieve size and species richness in fishbone assemblages. Journal of Archaeological Science, 32, 635–641.CrossRefGoogle Scholar
  96. Zohar, I., Dayan, T., Galili, E., & Spanier, E. (2001). Fish processing during the early Holocene: A taphonomic case study from coastal Israel. Journal of Archaeological Science, 28(10), 1041–1053.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ArchaeologySimon Fraser UniversityBurnabyCanada

Personalised recommendations