Advertisement

Contemporary Challenges in Zooarchaeological Specimen Identification

Chapter

Abstract

Zooarchaeology is a field heavily integrated with many other disciplines, including zoology, biology, ecology, geology, history, and anthropology. The basis of the discipline lies in the zooarchaeologist’s ability to identify faunal remains based on analogy with known specimens, either from a comparative faunal collection or from experience. Yet, today many zooarchaeologists work in regions of the world without adequate comparative materials or in diverse settings with different research demands, such as contract archaeology or forensic laboratories. At the same time, advances in genetic research are restructuring the phylogenetic classification schemes of many taxa, calling into question the foundation of zooarchaeological analogy. In this chapter we argue that zooarchaeologists, who have never had specific disciplinary-wide “research standards”, should seek epistemological flexibility regarding specimen identification, evaluation, and correction to continue the scientific advancement of the discipline. We review past zooarchaeologists’ concerns regarding the nature of specimen identification and data sharing, discuss the dynamic nature of species reclassification in phylogenetics and its effect on zooarchaeology, and provide case studies of challenges zooarchaeologists face while trying to make identifications in diverse settings and with less-than-adequate resources. Finally, we discuss the importance of maintaining epistemological flexibility in the age of “big data”, where shared datasets of identifications cannot and should not be seen as immutable entities, but rather observations that are subject to reanalysis, change, and improvement as zooarchaeologists keep abreast of ongoing discoveries in their own field as well as those of related disciplines.

Keywords

Identification Zooarchaeological epistemology Analogy Big data Taxonomy Best practices 

Notes

Acknowledgements

We thank Christina Giovas as well as two anonymous peer reviewers for their comments and suggestions. We also wish to acknowledge the many colleagues and friends in zooarchaeological practice that we have had the privilege of working with in both field and laboratory settings. We have and continue to benefit enormously from face-to-face as well as virtual consultations—many thanks to you all.

References

  1. Albarella, U. (Ed.). (2001). Environmental archaeology: Meaning and purpose. Boston: Kluwer Academic.Google Scholar
  2. Alström, P., Ericson, P. G. P., Olsson, U., & Sundberg, P. (2006). Phylogeny and classification of the avian superfamily Sylvioidea. Molecular Phylogenetics and Evolution, 38(2), 381–397.CrossRefGoogle Scholar
  3. Asher, R. (1961). Analogy in archaeological interpretation. Southwestern Journal of Anthropology, 17, 317–325.CrossRefGoogle Scholar
  4. Atici, L., Kansa, S. W., Lev-Tov, J., & Kansa, E. C. (2013). Other people’s data: A demonstration of the imperative of publishing primary data. Journal of Archaeological Method and Theory, 20(4), 663–681.CrossRefGoogle Scholar
  5. Baker, P. & Worley, F. (2014). Animal bones and archaeology: Guidelines for best practice. Swindon: English Heritage. Retrieved February 10, 2017 from https://content.historicengland.org.uk/images-books/publications/animal-bones-and-archaeology/animal-bones-and-archaeology.pdf.
  6. Bartosiewicz, L. (2008). Taphonomy and palaeopathology in archaeozoology. Geobios, 41(1), 69–77.CrossRefGoogle Scholar
  7. Behrensmeyer, A. K., Gordon, K. D., & Yanagi, G. T. (1986). Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature, 319(6056), 768–771.CrossRefGoogle Scholar
  8. Betancur, R. R., Broughton, R. E., Wiley, E. O., Carpenter, K., Andrés López, J., Li, C., et al. (2013). The tree of life and a new classification of bony fishes. PLOS Currents Tree of Life. doi:10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288.Google Scholar
  9. Betts, M. W., Maschner, H. D. G., Schou, C. D., Schlader, R., Holmes, J., Clement, N., et al. (2011). Virtual zooarchaeology: Building a web-based reference collection of northern vertebrates for archaeofaunal research and education. Journal of Archaeological Science, 38, 755–762.CrossRefGoogle Scholar
  10. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22(3), 148–155.CrossRefGoogle Scholar
  11. Binford, L. R. (1967). Smudge pits and hide smoking: The use of analogy in archaeological reasoning. American Antiquity, 32(1), 1–12.CrossRefGoogle Scholar
  12. Binford, L. R. (1977). For theory building. New York, NY: Academic.Google Scholar
  13. Binford, L. R. (1981). Bones: Ancient men and modern myths. New York: Academic.Google Scholar
  14. Bochenski, Z. M. (2008). Identification of skeletal remains of closely related species: The pitfalls and solutions. Journal of Archaeological Science, 35, 1247–1250.CrossRefGoogle Scholar
  15. Bovy, K. M. (2011). Comments on “Identification, Classification, & Zooarchaeology”. Ethnobiology Letters, 2, 30.Google Scholar
  16. Bovy, K. M. (2012). Zooarchaeological evidence for Sandhill Crane (Grus Canadensis) breeding in Northwestern Washington State. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 23–41). Tuscon: The University of Arizona Press.Google Scholar
  17. Branch, N. P., Black, S., Maggi, R., & Marini, N. A. F. (2014). The Neolithisation of Liguria (NW Italy): An environmental archaeological and palaeoenvironmental perspective. Environmental Archaeology, 19(3), 196–213.CrossRefGoogle Scholar
  18. Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA barcoding of marine metazoa. Annual Review of Marine Science, 3(1), 471–508.CrossRefGoogle Scholar
  19. Butler, V. L., & Lyman, R. L. (1996). Taxonomic identifications and faunal summaries: What should we be including in our faunal reports? Society for American Archaeology Bulletin, 14(1), 1–22.Google Scholar
  20. Campbell, M. (2016). Body part representation and the extended analysis of New Zealand fishbone. Archaeology in Oceania, 51(1), 18–30.CrossRefGoogle Scholar
  21. Cannon, M. D. (1999). A mathematical model of the effects of screen size on zooarchaeological relative abundance measures. Journal of Archaeological Science, 26, 205–214.CrossRefGoogle Scholar
  22. Cannon, M. D. (2001). Archaeofaunal relative abundance, sample size, and statistical methods. Journal of Archaeological Science, 28, 185–195.CrossRefGoogle Scholar
  23. Cannon, M. D. (2013). NISP, bone fragmentation, and the measurement of taxonomic abundance. Journal of Archaeological Method and Theory, 20(3), 397–419.CrossRefGoogle Scholar
  24. Claassen, C. (2000). Quantifying shell: Comments on Mason, Peterson, and Tiffany. American Antiquity, 65(2), 415–418.CrossRefGoogle Scholar
  25. Cooper, A., & Green, C. (2016). Embracing the complexities of “big data” in archaeology: The case of the English Landscape and Identities Project. Journal of Archaeological Method and Theory, 23(1), 271–304.CrossRefGoogle Scholar
  26. Crabtree, P. J. (1990). Zooarchaeology and complex societies: Some uses of faunal analysis for the study of trade, social status, and ethnicity. Archaeological Method and Theory, 2, 155–199.Google Scholar
  27. Crabtree, P. J. (2016). Zooarchaeology in Oceania: An overview. Archaeology in Oceania, 51(1), 1–6.CrossRefGoogle Scholar
  28. Crouch, J., McNiven, I. J., David, B., Rowe, C., & Weisler, M. (2007). Berberass: Marine resource specialisation and environmental change in Torres Strait during the past 4000 years. Archaeology in Oceania, 42(2), 49–64.CrossRefGoogle Scholar
  29. Davidson, J. M., Fraser, K., Leach, B. F., & Sinoto, Y. H. (1999). Prehistoric fishing at Hane, Ua Huka, Marquesas Islands, French Polynesia. New Zealand Journal of Archaeology, 21, 5–28.Google Scholar
  30. deFrance, S. D. (2009). Zooarchaeology in complex societies: Political economy, status, and ideology. Journal of Archaeological Research, 17, 105–168.CrossRefGoogle Scholar
  31. Dincauze, D. F. (2000). Environmental archaeology: Principles and practice. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Domínguez-Rodrigo, M. (2012). Critical review of the MNI (minimum number of individuals) as a zooarchaeological unit of quantification. Archaeological and Anthropological Sciences, 4(1), 47–59.CrossRefGoogle Scholar
  33. Doolittle, W. F. (1999). Phylogenetic classification and the universal tree. Science, 284(5423), 2124–2128.CrossRefGoogle Scholar
  34. Driver, J. C. (1992). Identification, classification and zooarchaeology. Circaea, 9(1), 35–47.Google Scholar
  35. Driver, J. C. (2011a). Identification, classification and zooarchaeology. Ethnobiology Letters, 2, 19–29.Google Scholar
  36. Driver, J. C. (2011b). Twenty years after “Identification, classification and zooarchaeology”. Ethnobiology Letters, 2, 36–39.Google Scholar
  37. Emery, K. F. (2004). In search of the “Maya Diet”: Is regional comparison possible in the Maya tropics? Archaeofauna, 13, 37–56.Google Scholar
  38. Emery, K. F. (2010). Dietary, environmental, and societal implications of ancient Maya animal use in the Petexbatum: A zooarchaeological perspective on the collapse.Vanderbilt Institute of Mesoamerican Archaeology 5. Nashville: Vanderbilt University Press.Google Scholar
  39. Evans, J. G. (2003). Environmental archaeology and the social order. London: Routledge.Google Scholar
  40. Faniel, I., Kansa, W., Kansa, S. W., Barrera-Gomez, J., & Yakel, E. (2013). The challenges of digging data: A study of context in archaeological data reuse. In Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries (pp. 295–304). New York: ACM Digital Library.CrossRefGoogle Scholar
  41. Feder, K. L. (1990). Frauds, myths, and mysteries: Science and pseudoscience in archaeology. Palo Alto, CA: Mayfield.Google Scholar
  42. Fiorillo, A. R. (1989). An experimental study of trampling: Implications for the fossil record. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 61–71). Orono, ME: Center for the Study of the First Americans, University of Maine.Google Scholar
  43. Gattiglia, G. (2015). Think big about data: Archaeology and the big data challenge. Archäologische Informationen, 38(1), 113–124.Google Scholar
  44. Gentry, A., Clutton-Brock, J., & Groves, C. P. (2004). The naming of wild animal species and their domestic derivatives. Journal of Archaeological Science, 31, 645–651.CrossRefGoogle Scholar
  45. Gifford, D. P. (1981). Taphonomy and paleoecology: A critical review of archaeology’s sister disciplines. Advances in Archaeological Method and Theory, 4, 365–438.CrossRefGoogle Scholar
  46. Gifford-Gonzalez, D. (1991). Bones are not enough: Analogues, knowledge, and interpretive strategies in zooarchaeology. Journal of Anthropological Archaeology, 10, 215–245.CrossRefGoogle Scholar
  47. Gilbert, A. S., & Singer, B. H. (1982). Reassessing zooarchaeological quantification. World Archaeology, 14, 21–40.CrossRefGoogle Scholar
  48. Giovas, C. M. (2009). The shell game: Analytic problems in archaeological mollusc quantification. Journal of Archaeological Science, 26, 1557–1564.CrossRefGoogle Scholar
  49. Giovas, C. M., Lambrides, A. B. J., Fitzpatrick, S. M., & Kataoka, O. (2017). Reconstructing prehistoric fishing zones in Palau, Micronesia using fish remains: A blind test of inter-analyst correspondence. Archaeology in Oceania, 52(1), 45–61.CrossRefGoogle Scholar
  50. Glassow, M. A. (2000). Weighing vs. counting shellfish remains: A comment on Mason, Peterson, and Tiffany. American Antiquity, 65(2), 407–414.CrossRefGoogle Scholar
  51. Gobalet, K. W. (2001). A critique of faunal analysis: Inconsistency among experts in blind tests. Journal of Archaeological Science, 28, 377–386.CrossRefGoogle Scholar
  52. Gobalet, K. W. (2005). Comment on “Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra I, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia” by Vale and Gargett. Journal of Archaeological Science, 32(4), 643–645.CrossRefGoogle Scholar
  53. Grayson, D. K. (1984). Quantitative zooarchaeology: Topics in the analysis of archaeological faunas. New York: Academic.Google Scholar
  54. Grayson, D. K. (1989). Bone transport, bone destruction, and reverse utility curves. Journal of Archaeological Science, 16(6), 643–652.CrossRefGoogle Scholar
  55. Grouard, S. (2003). Pre-Columbian fishing strategies in Guadeloupe Archipelago (FWI). In A. F. Guzman, O. J. Polaco, & F. J. Aguilar (Eds.), Presence of the Archaeoichthyology in México: Proceedings of the 12th Meeting of the Fish Remains Working Group of the International Council of Archaeozoology (pp. 53–64). Guadalajara: International Council of Arcaheozoology.Google Scholar
  56. Halstead, P., Collins, P., & Isaakidou, V. (2002). Sorting the sheep from the goats: Morphological distinctions between the mandibles and mandibular teeth of adult Ovis and Capra. Journal of Archaeological Science, 29(5), 545–553.CrossRefGoogle Scholar
  57. Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes biology, evolution, and ecology (2nd ed.). Oxford: Wiley-Blackwell.Google Scholar
  58. Hodder, I. (1982). Symbols in action. Cambridge: Cambridge University Press.Google Scholar
  59. James, S. R. (1997). Methodological issues concerning screen size recovery rates and their effects on archaeofaunal interpretations. Journal of Archaeological Science, 24, 385–397.CrossRefGoogle Scholar
  60. Kansa, E. (2005). A community approach to data integration: Authorship and building meaningful links across diverse archaeological data sets. Geosphere, 1(2), 97–109.CrossRefGoogle Scholar
  61. Kansa, E. C., & Kansa, S. W. (2013). We all know that a 14 is a sheep: Data publication and professionalism in archaeological communication. Journal of Eastern Mediterranean Archaeology & Heritage Studies, 1(1), 88–97.CrossRefGoogle Scholar
  62. Keegan, W. F. (2009). The synergism of biology and culture. Journal of Island and Coastal Archaeology, 4, 240–248.CrossRefGoogle Scholar
  63. Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420(1), 73–90.CrossRefGoogle Scholar
  64. Larson, G., Karlsson, E. K., Perri, A., Webster, M. T., Ho, S. Y. W., Peters, J., et al. (2012). Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proceedings of the National Academy of Sciences, 109(23), 8878–8883.CrossRefGoogle Scholar
  65. Layton, K. K. S., Martel, A. L., & Hebert, P. D. N. (2014). Patterns of DNA barcode variation in Canadian marine molluscs. PLOS ONE, 9(4), e95003.Google Scholar
  66. Leach, F. (1986). A method for the analysis of Pacific Island fishbone assemblages and an associated database management system. Journal of Archaeological Science, 13(2), 147–159.Google Scholar
  67. Lyman, R. L. (1985). Bone frequencies: Differential transport, in situ destruction, and the MGUI. Journal of Archaeological Science, 12(3), 221–236.CrossRefGoogle Scholar
  68. Lyman, R. L. (1986). On the analysis and interpretation of species list data in zooarchaeology. Journal of Ethnobiology, 6(1), 67–81.Google Scholar
  69. Lyman, R. L. (1987). Archaeofaunas and butchery studies: A taphonomic perspective. Advances in Archaeological Method and Theory, 10, 249–337.CrossRefGoogle Scholar
  70. Lyman, R. L. (1994a). Quantitative units and terminology in zooarchaeology. American Antiquity, 59(1), 36–71.CrossRefGoogle Scholar
  71. Lyman, R. L. (1994b). Vertebrate taphonomy. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  72. Lyman, R. L. (2002). Taxonomic identification of zooarchaeological remains. The Review of Archaeology, 23(2), 13–20.Google Scholar
  73. Lyman, R. L. (2008). Quantitative paleozoology. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  74. Lyman, R. L. (2010). Paleozoology’s dependence on natural history collections. Journal of Ethnobiology, 30(1), 126–136.CrossRefGoogle Scholar
  75. Lyman, R. L. (2011). Comment on identification, classification, and zooarchaeology. Ethnobiology Letters, 2, 33–34.Google Scholar
  76. Lyman, R. L. (2012). Applied zooarchaeology: History, value, and use. In S. Wolverton & R. L. Lyman (Eds.), Conservation biology and applied zooarchaeology (pp. 208–232). Tuscon: The University of Arizona Press.Google Scholar
  77. Lyman, R. L., & Cannon, K. P. (Eds.). (2004). Zooarchaeology and conservation biology. Salt Lake City: University of Utah Press.Google Scholar
  78. Lyman, R. L., & O’Brien, M. J. (2001). The direct historical approach, analogical reasoning, and theory in Americanist archaeology. Journal of Archaeological Method and Theory, 8(4), 303–342.CrossRefGoogle Scholar
  79. Lyman, R. L., & VanPool, T. L. (2009). Metric data in archaeology: A study of intra-analyst and inter-analyst variation. American Antiquity, 74(3), 485–504.CrossRefGoogle Scholar
  80. Marciniak, A. (1999). Faunal materials and interpretive archaeology—Epistemology reconsidered. Journal of Archaeological Method and Theory, 6(4), 293–320.CrossRefGoogle Scholar
  81. Marciniak, A. (2011). Folk taxonomies and human-animal relations: The early Neolithic in the Polish lowlands. In U. Albarella & A. Trentacoste (Eds.), Ethnozooarchaeology: The present and past of human-animal relationships (pp. 29–38). Oxford: Oxbow Books.Google Scholar
  82. Marshall, F., & Pilgram, T. (1993). NISP vs. MNI in quantification of body-part representation. American Antiquity, 58(2), 261–269.CrossRefGoogle Scholar
  83. Mason, R. D., Peterson, M. L., & Tiffany, J. A. (1998). Weighing vs. counting: Measurement reliability and the California School of Midden Analysis. American Antiquity, 63, 303–324.Google Scholar
  84. Mason, R. D., Peterson, M. L., & Tiffany, J. A. (2000). Weighing and counting shell: A response to Glassow and Claassen. American Antiquity, 65(4), 757–761.CrossRefGoogle Scholar
  85. Nagaoka, L. (1994). Differential recovery of Pacific Island fish remains: Evidence from the Moturakau Rockshelter, Aitutaki, Cook Islands. Asian Perspectives, 33(1), 1–17.Google Scholar
  86. O’Connor, T. (2008). The archaeology of animal bones. College Station, TX: A&M University Press.Google Scholar
  87. Oliver, J. S. (1989). Analogues and site context: Bone damages from Shield Trap Cave (24CB91), Carbon County, Montana, USA. In R. Bonnichsen & M. H. Sorg (Eds.), Bone modification (pp. 73–98). Orono, ME: Center for the Study of the First Americans, University of Maine.Google Scholar
  88. Olmo, R. K. (2013). New flesh for old bones: Using modern reef fish to understand midden remains from Guam, Mariana Islands. In R. Ono, A. Morrison, & D. Addison (Eds.), Prehistoric marine resource use in the Indo-Pacific regions (pp. 1–31). Canberra: Australian National University Press.Google Scholar
  89. Ono, R., & Clark, G. (2012). A 2500-year record of marine resource use on Ulong Island, Republic of Palau. International Journal of Osteoarchaeology, 22(6), 637–654.CrossRefGoogle Scholar
  90. Orton, D. C. (2012). Taphonomy and interpretation: An analytical framework for social zooarchaeology. International Journal of Osteoarchaeology, 22(3), 320–337.CrossRefGoogle Scholar
  91. Payne, S. B. (1972). Partial recovery and sample bias: The results of some sieving experiments. In E. S. Higgs (Ed.), Papers in economic prehistory (pp. 49–64). Cambridge: Cambridge University Press.Google Scholar
  92. Payne, S. (1985). Morphological distinctions between the mandibular teeth of young sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 12(2), 139–147.CrossRefGoogle Scholar
  93. Peres, T. M. (2010). Methodological issues in zooarchaeology. In A. M. Van Derwarker & T. M. Peres (Eds.), Integrating zooarchaeology and paleoethnobotany: A consideration of issues, methods, and cases (pp. 15–36). New York: Springer.CrossRefGoogle Scholar
  94. Pfeiffer, J., Sharpe, A., Johnson, N., Emery, K., & Page, L. (2017). Molecular phylogeny of the Nearctic and Mesoamerican freshwater mussel genus Megalonaias. Hydrobiologia, In Review.Google Scholar
  95. Plug, C., & Plug, I. (1990). MNI counts as estimates of species abundance. The South African Archaeological Bulletin, 45(151), 53–57.CrossRefGoogle Scholar
  96. Pyron, R. A., & Wiens, J. J. (2011). A large-scale phylogeny of Amphibia including over 2800 species, and a revised classification of extant frogs, salamanders, and caecilians. Molecular Phylogenetics, 61, 543–583.CrossRefGoogle Scholar
  97. Rea, A. M. (1986). Verification and reverification: Problems in archaeofaunal studies. Journal of Ethnobiology, 6(1), 9–18.Google Scholar
  98. Reitz, E. J., & Shackley, M. (Eds.). (2012). Introduction to environmental archaeology. Manuals in archaeological method, theory and technique (pp. 1–39). New York: Springer.Google Scholar
  99. Reitz, E. J., & Wing, E. S. (1999). Zooarchaeology. Cambridge manuals in archaeology. Cambridge: Cambridge University Press.Google Scholar
  100. Reitz, E. J., & Wing, E. S. (2008). Zooarchaeology. Cambridge Manuals in Archaeology (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  101. Reitz, E. J., Newsom, L. A., & Scudder, S. J. (Eds.). (1996). Case studies in environmental archaeology. New York: Plenum.Google Scholar
  102. Reitz, E. J., Newsom, L. A., Scudder, S. J., & Scarry, C. M. (Eds.). (2008). Introduction to environmental archaeology.In Case studies in environmental archaeology (2nd ed., pp. 3–21). New York: Springer.Google Scholar
  103. Rick, T. C., & Lockwood, R. (2013). Integrating paleobiology, archeology, and history to informbiological conservation. Conservation Biology, 27(1), 45–54.CrossRefGoogle Scholar
  104. Ringrose, T. J. (1993). Bone counts and statistics: A critique. Journal of Archaeological Science, 20, 121–157.CrossRefGoogle Scholar
  105. Russell, N. (2012). Social Zooarchaeology: Humans and animals in prehistory. Cambridge: Cambridge University Press.Google Scholar
  106. Schmitt, D. N., & Lupo, K. D. (1995). Archaeology on mammalian taphonomy, taxonomic diversity, and measuring subsistence data in zooarchaeology. American Antiquity, 60(3), 496–514.CrossRefGoogle Scholar
  107. Shaffer, B. S. (1992). Quarter-inch screening: Understanding biases in recovery of vertebrate faunal remains. American Antiquity, 57, 129–136.CrossRefGoogle Scholar
  108. Shaffer, B. S., & Sanchez, J. L. J. (1994). Comparison of 1/8” and 1/4” mesh recovery of controlled samples of small-to-medium-sized mammals. American Antiquity, 59(3), 525–530.Google Scholar
  109. Stahl, P. W. (2008). The contributions of zooarchaeology to historical ecology in the Neotropics. Quaternary International, 180, 5–16.CrossRefGoogle Scholar
  110. Thornton, E. K. (2011). Animal resources in ancient maya economy and exchange: Zooarchaeological and isotopic perspectives. Unpublished Ph.D. dissertation, University of Florida, Gainesville.Google Scholar
  111. Vale, D., & Gargett, R. H. (2002). Size matters: 3-mm sieves do not increase richness in a fishbone assemblage from Arrawarra 1, an Aboriginal Australian shell midden on the mid-north coast of New South Wales, Australia. Journal of Archaeological Science, 29, 57–63.CrossRefGoogle Scholar
  112. Wake, T. A. (2004). On the paramount importance of adequate comparative collections and recovery techniques in the identification and interpretation of vertebrate archaeofaunas: A reply to Vale and Gargett (2002). Archaeofauna, 13, 173–182.Google Scholar
  113. Wilkinson, K., & Stevens, C. (2003). Environmental archaeology: Approaches, techniques, and applications. Stroud: Tempus.Google Scholar
  114. Wing, E. S., & Quitmyer, I. R. (1992). A modern midden experiment. In W. H. Marquardt (Ed.), Culture and environment in the domain of the Calusa (pp. 367–373). Monograph Number 1. Gainesville: Institute of Archaeology and Paleoenvironmental Studies.Google Scholar
  115. Wolverton, S. (2002). NISP:MNE and %Whole in analysis of prehistoric carcass exploitation. North American Archaeologist, 23(2), 85–100.CrossRefGoogle Scholar
  116. Wolverton, S. (2013). Data quality in zooarchaeological faunal identification. Journal of Archaeological Method and Theory, 20, 381–396.CrossRefGoogle Scholar
  117. Wolverton, S., & Lyman, R. L. (Eds.). (2012). Conservation biology and applied zooarchaeology. Tucson: University of Arizona Press.Google Scholar
  118. Wylie, A. (1982). An analogy by any other name is just as analogical. Journal of Anthropological Archaeology, 1, 382–401.CrossRefGoogle Scholar
  119. Wylie, A. (1985). The reaction against analogy. Advances in Archaeological Method and Theory, 8, 63–111.CrossRefGoogle Scholar
  120. Wylie, A. (2002). Thinking of things: Essays in the philosophy of archaeology. Berkeley: University of California.Google Scholar
  121. Zeder, M. A., & Lapham, H. A. (2010). Assessing the reliability of criteria used to identify postcranial bones in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37(11), 2887–2905.CrossRefGoogle Scholar
  122. Zeder, M. A., & Pilaar, S. E. (2010). Assessing the reliability of criteria used to identify mandibles and mandibular teeth in sheep, Ovis, and goats, Capra. Journal of Archaeological Science, 37, 225–242.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Florida Museum of Natural HistoryUniversity of FloridaGainesvilleUSA
  2. 2.Center for Tropical Paleoecology and ArchaeologySmithsonian Tropical Research InstituteBalboa-AncónPanama

Personalised recommendations