Molluscs and Paleoenvironmental Reconstruction in Island and Coastal Settings: Variability, Seasonality, and Sampling



In recent years there have been significant methodological advances in sampling and interpreting oxygen isotope data from mollusc shells recovered from archaeological sites. In particular, the oxygen isotope record in mollusc shells derived from island and coastal sites reveals trends in mollusc collection intensity, seasonality, and paleoenvironmental conditions. These lines of evidence add a new dimension for interpreting human-environmental interactions. Sampling strategies that are appropriate for the growth rate of the species in question and the research objectives are essential for accurately interpreting oxygen isotope results. Therefore, we argue that high-resolution sampling methods provide more useful results than low-resolution methods, in both seasonality studies and paleoenvironmental reconstruction. This chapter will review current techniques in the geochemical analysis of mollusc shells, issues related to sampling methods and interpretation, and will address future directions for this method.


Sclerochronology Oxygen isotopes Paleoclimate Midden Archaeology 



The authors would like to acknowledge the editors for organizing an excellent volume and including our perspective. We thank Donna Surge and Christina Giovas for comments on this manuscript.


  1. Andrus, C. F. T. (2011). Shell midden sclerochronology. Quaternary Science Reviews, 30, 2892–2905.CrossRefGoogle Scholar
  2. Andrus, C. F. T. (2012). Mollusks as oxygen-isotope season-of-capture proxies in southeastern United States archaeology. In E. J. Reitz, I. R. Quitmyer, & D. H. Thomas (Eds.), Seasonality and human mobility along the Georgia Bight (pp. 123–132). Anthropological Papers of the American Museum of Natural History, No. 97.Google Scholar
  3. Andrus, C. F. T., & Crowe, D. E. (2000). Geochemical analysis of Crassostrea virginica as a method to determine season of capture. Journal of Archaeological Science, 27(1), 33–42.CrossRefGoogle Scholar
  4. Andrus, C. F. T., Sandweiss, D. H., & Reitz, E. J. (2008). Climate change and archaeology: The Holocene history of El Niño. In E. Reitz, C. M. Scarry, & S. J. Scudder (Eds.), Case studies in environmental archaeology (pp. 143–157). New York: Springer.CrossRefGoogle Scholar
  5. Bailey, G. N., Deith, M. R., & Shackleton, N. J. (1983). Oxygen isotope analysis and seasonality determinations: Limits and potential of a new technique. American Antiquity, 48(2), 390–398.CrossRefGoogle Scholar
  6. Bar-Yosef Mayer, D. E., Leng, M. J., Aldridge, D. C., Arrowsmith, C., Gümüş, B. A., & Sloane, H. J. (2012). Modern and early-middle Holocene shells of the freshwater mollusk Unio, from Çatalhöyük in the Konya Basin, Turkey: Preliminary paleoclimatic implications from molluscan isotope data. Journal of Archaeological Science, 39, 76–83.Google Scholar
  7. Beelaerts, V. F., De Ridder, F., Schmitz, N., Bauwens, M., & Pintelon, R. (2010). Time-series reconstruction from natural archive data with the averaging effect taken into account. Mathematical Geosciences, 42, 705–722.CrossRefGoogle Scholar
  8. Binford, L. R. (1980). Willow smoke and dog’s tails: Hunter-gatherer settlement systems and archaeological site formation. American Antiquity, 45, 4–20.CrossRefGoogle Scholar
  9. Blitz, J. H., Andrus, C. F. T., & Downs, L. E. (2014). Sclerochronological measures of seasonality at a Late Woodland mound on the Mississippi Gulf Coast. American Antiquity, 79(4), 697–711.Google Scholar
  10. Böhm, F., Joachimski, J. M., Dullo, W.-C., Eisenhauer, A., Lehnert, H., Retiner, J., & Wörheide, G. (2000). Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta, 64, 1695–1703.CrossRefGoogle Scholar
  11. Burchell, M. (2013). Shellfish Harvest on the coast of British Columbia: The archaeology of settlement and subsistence through high-resolution stable isotope analysis and sclerochronology. Unpublished Ph.D. dissertation, McMaster University, Hamilton, ON.Google Scholar
  12. Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., & Schöne, B. R. (2013a). Inter-site variability in the season of shellfish collection on the central coast of British Columbia. Journal of Archaeological Science, 40, 626–636.CrossRefGoogle Scholar
  13. Burchell, M., Cannon, A., Hallmann, N., Schwarcz, H. P., & Schöne, B. R. (2013b). Refining estimates for the season of shellfish collection on the Pacific Northwest Coast: Applying high-resolution stable oxygen isotope analysis and sclerochronology. Archaeometry, 55, 258–276.CrossRefGoogle Scholar
  14. Burchell, M., Hallmann, N., Martindale, A., Bannon, A., & Schöne, B. R. (2013c). Seasonality and intensity of shellfish harvesting on the north coast of British Columbia. Journal of Island and Coastal Archaeology, 8(2), 152–169.CrossRefGoogle Scholar
  15. Burchell, M., Hallmann, N., Schöne, B. R., Cannon, A., & Schwarcz, H. P. (2014). Biogeochemical signatures of archaeological shells: Implications for interpreting seasonality at shell midden sites. In M. Roksandic, S. Mendonça de Souza, S. Eggers, M. Burchell, & D. Klokler (Eds.), The cultural dynamics of shell middens and shell mounds: A worldwide perspective (pp. 241–250). Albuquerque: University of New Mexico Press.Google Scholar
  16. Cannon, A. (2002). Sacred power and seasonal settlement on the central Northwest Coast. In B. Fitzhugh & J. Habu (Eds.), Beyond foraging and collecting: Evolutionary change in hunter-gatherer settlement systems (pp. 311–338). New York: Plenum Press.CrossRefGoogle Scholar
  17. Cannon, A., & Burchell, M. (2009). Clam growth-stage profiles as a measure of harvest intensity and resource management on the central coast of British Columbia. Journal of Archaeological Science, 36, 1050–1060.CrossRefGoogle Scholar
  18. Carmichael, R. H., Hattenrath, T. K., Valiela, I., & Michener, R. H. (2008). Nitrogen stable isotopes in the shell of Mercenaria mercenaria trace wastewater inputs from watersheds to estuarine ecosystems. Aquatic Biology, 4, 99–111.CrossRefGoogle Scholar
  19. Carré, M., Bentaleb, I., Blamart, D., Ogle, N., Cardenas, F., Zevallos, S., et al. (2005). Stable isotopes and sclerochronology of the bivalve Mesodesma donacium: Potential application to Peruvian paleoceanographic reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 4–25.Google Scholar
  20. Claassen, C. P. (1983). Prehistoric shellfishing patterns in North Carolina. In Animals and archaeology: Shell middens, fishes and birds (Vol. 2, pp. 221–223).Google Scholar
  21. Claassen, C. (1998). Shells. Cambridge: Cambridge University Press.Google Scholar
  22. Clark, L. R., & Clarke, A. H. (1980). Zooarchaeological analysis of mollusc remains from Yuquot, British Columbia. In W. J. Folan & J. Dewhirst (Eds.), The Yuquot Project (Vol. 2). History and Archaeology, No. 43. Ottawa: National Historic Parks and Sites Branch, Parks Canada.Google Scholar
  23. Coupland, G., Bissell, C., & King, S. (1993). Prehistoric subsistence and seasonality at Prince Rupert Harbour: Evidence from the McNichol Creek Site. Canadian Journal of Archaeology, 17, 59–73.Google Scholar
  24. Coutts, P. (1970). Bivalve-growth patterning as a method for dating in archaeology. Nature, 226 (5248), 874.CrossRefGoogle Scholar
  25. Coutts, P., & Highham, C. (1971). The seasonal factor in prehistoric New Zealand. World Archaeology, 3, 266–277.CrossRefGoogle Scholar
  26. Crockford, S., & Wigen, R. (1991). Appendix IV: Shellfish seasonality. In Archaeological investigations at Tsawwassen, B.C. (Vol. 4). British Columbia: Archaeology Branch, Ministry of Natural Resource Operations (report on file), Arcas Consulting Archaeologists Ltd.Google Scholar
  27. Culleton, B. J., Kennett, D. J., & Jones, T. L. (2009). Oxygen isotope seasonality in a temperate estuarine shell midden: A case study from CA-ALA-17 on the San Francisco Bay. Journal of Archaeological Science, 36, 1354–1363.CrossRefGoogle Scholar
  28. De Ridder, F., de Brauwere, A., Pintelon, R., Schoukens, J., Dehairs, F., Baeyens, W., et al. (2007). Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—a quantitative approach to the evaluation of incomplete data, by Wilkinson, B. H., Ivany, L. C., 2002. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 95–114. Palaeogeography, Palaeoclimatology, Palaeoecology, 248 (3–4), 473–476.Google Scholar
  29. Deith, M. R. (1986). Subsistence strategies at a Mesolithic campsite: Evidence from stable isotopes analyses of shells. Journal of Archaeological Science, 13, 61–78.CrossRefGoogle Scholar
  30. Eerkens, J. W., Byrd, B. F., Spero, H. J., & Fritschi, A. K. (2013). Stable isotope reconstructions of shellfish harvesting seasonality in an estuarine environment: Implications for Late Holocene San Francisco Bay settlement patterns. Journal of Archaeological Science, 40, 2014–2024.CrossRefGoogle Scholar
  31. Eiler, J. M. (2011). Paleoclimate reconstruction using carbonate clumped isotope thermometry. Quaternary Science Reviews, 30 (25–26), 3575–3588.CrossRefGoogle Scholar
  32. Epstein, S., Buschbaum, R., Lowenstam, H. A., & Urey, H. C. (1953). Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 11, 1315–1236.CrossRefGoogle Scholar
  33. Etayo-Cadavid, M. F., Andrus, C. F. T., Jones, K. B., Hodgins, G. W. L., Sandweiss, D. H., Uceda-Castillo, S., et al. (2013). Marine radiocarbon reservoir age variation in Donax obesulus shells from Northern Peru: Late Holocene evidence for extended El Niño. Geology, 41, 599–602.Google Scholar
  34. Fertig, B., Carruthers, T. J. B., Dennison, W. C., Fertig, E. J., & Altabet, M. A. (2010). Eastern oyster (Crassostrea virginica) δ15N as a bioindicator of nitrogen sources: Observations and modeling. Marine Pollution Bulletin, 1288–1298.Google Scholar
  35. Gillikin, D. P., Lorrain, A., Navez, J., Taylor, J. W., Keppens, E., Baeyens, W., et al. (2005). Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry, Geophysics, Geosystems, 6. doi: 10.1029/2004GC000874.
  36. Godfrey, M. C. S. (1988). Oxygen isotope analysis: A means for determining the seasonal gathering of the Pipi (Donax deltoides) by Aborigines in prehistoric Australia. Archaeology in Oceania, 23, 17–21.CrossRefGoogle Scholar
  37. Goodwin, D. H., Schöne, B. R., & Dettman, D. L. (2003). Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: Models and observations. PALAIOS, 18, 110–125.CrossRefGoogle Scholar
  38. Gröcke, D. R., & Gillikin, D. P. (2008). Advances in mollusc sclerochronology and sclerochemistry tools for understanding climate and environment. Geo-Marine Letters, 28, 265–268.CrossRefGoogle Scholar
  39. Grossman, E. L., & Ku, T.-L. (1986). Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects. Chemical Geology, 59, 59–74.CrossRefGoogle Scholar
  40. Hallmann, N., Burchell, M., Schöne, B. R., & Maxwell, D. (2009). High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: Techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science, 36, 2353–2364.CrossRefGoogle Scholar
  41. Hallmann, N., Schöne, B. R., Irvine, G. V., Burchell, M., Cockelet, D., & Hilton, M. (2011). An improved understanding of the Alaska Coastal Current: The application of a bivalve growth-temperature model to reconstruct freshwater-influenced paleoenvironments. PALAIOS, 26 (6), 346–363.CrossRefGoogle Scholar
  42. Hallmann, N., Burchell, M., Brewster, N., Martindale, A., & Schöne, B. R. (2013). Holocene climate and seasonality of shell collection at the Dundas Islands Group, northern British Columbia, Canada—a bivalve sclerochronological approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 163–172.Google Scholar
  43. Ham, L., & Irvine, M. (1975). Techniques for determining seasonality of shell middens from marine mollusk remains. Syesis, 8, 363–373.Google Scholar
  44. Henkes, G. A., Passey, B. H., Wanamaker, A. D., Jr., Grossman, E. L., Ambrose, W. G., Jr., & Carroll, M. L. (2013). Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochimica et Cosmochimica Acta, 106, 307–325.CrossRefGoogle Scholar
  45. Jew, N. P., Erlandson, J. M., Watts, J., & White, F. J. (2013). Shellfish, seasonality, and stable isotope sampling: 18O analysis of mussel shells from an 8,800-year-old shell midden on California’s Channel Islands. Journal of Island and Coastal Archaeology, 8, 170–189.CrossRefGoogle Scholar
  46. Jones, D. S., & Quitmyer, J. (1996). Marking time with bivalve shells: Oxygen isotopes and seasons of annual increment formation. PALAIOS, 11, 340–346.CrossRefGoogle Scholar
  47. Jones, D. S., Quitmyer, I. R., & Andrus, C. F. T. (2005). Oxygen isotopic evidence for greater seasonality in Holocene shells of Donax varibilis from Florida. Palaeogeography, Palaeoclimatology, Palaeoecology, 228 (1), 96–108.CrossRefGoogle Scholar
  48. Jones, K. B., Hodgins, G. W. L., Andrus, C. F. T., & Etayo-Cadavid, M. F. (2010a). Modeling molluscan marine reservoir ages in a variable-upwelling environment. PALAIOS, 25, 126–131.CrossRefGoogle Scholar
  49. Jones, K. B., Hodgins, G. W. L., Etayo-Cadavid, M. F., Andrus, C. F. T., & Sandweiss, D. H. (2010b). Centuries of marine radiocarbon reservoir age variation within archaeological Mesodesma donacium shells from southern Peru. Radiocarbon, 52, 1207–1214.CrossRefGoogle Scholar
  50. Jones, D. S., Quitmyer, I. R, & DePratter, C. B. (2012). Oxygen isotope validation of annual macroscopic shell growth increments in modern and zooarchaeological hard clams (Mercenaria mercenaria) from the Litchfield Beach Locality, South Carolina. In E. J. Reitz, I. R. Quitmyer, & D. H. Thomas (Eds.), Seasonality and human mobility along the Georgia Bight (pp. 149–164). Anthropological Papers of the American Museum of Natural History, No. 97.Google Scholar
  51. Keen, S. D. (1979). The growth rings of clam shells from two pentlatch middens as indicators of seasonal gathering. Occasional Paper No. 3. Victoria, BC: Archaeology Division, Heritage Conservation Branch.Google Scholar
  52. Kennett, D. J., & Voorhies, B. (1996). Oxygen isotopic analysis of archaeological shells to detect seasonal use of wetlands on the southern Pacific Coast of Mexico. Journal of Archaeological Science, 23, 689–704.CrossRefGoogle Scholar
  53. Kennett, D. J., Ingram, B. L., Southon, J. R., & Wise, K. (2002). Differences in 14C age between stratigraphically associated charcoal and marine shell from the Archaic period site of Kilometer 4, Southern Peru: Old wood or old water? Radiocarbon, 44(1), 53–58.CrossRefGoogle Scholar
  54. Killingley, J. S. (1981). Seasonality of mollusk collecting determined from O-18 profiles of midden shells. American Antiquity, 46, 152–158.CrossRefGoogle Scholar
  55. Kingston, A. W. (2007). Stable isotope analysis of archaeological material from Namu, British Columbia, as a proxy for environmental change. Unpublished master’s thesis, McMaster University, Hamilton, ON.Google Scholar
  56. Leng, M. J., & Lewis, J. P. (2014). Oxygen isotopes in molluscan shell: Applications in environmental archaeology. Environmental Archaeology, 21(3), 295–306.Google Scholar
  57. Mannino, M. A., Baruch, F. S., & Thomas, K. D. (2003). Sampling shells for seasonality: Oxygen isotope analysis of shell carbonates on the intertidal gastropod Monodonta lineata (da Costa) from populations across its modern range and from a Mesolithic site in southern Britain. Journal of Archaeological Science, 30, 666–679.CrossRefGoogle Scholar
  58. Mannino, M. A., Thomas, K. D., Leng, M. J., Piperno, M., Tussa, S., & Tagliacozzo, A. (2007). Marine resources in the Mesolithic and Neolithic at the Grotta Dell’Uzzo (Sicily): Evidence from stable isotope analyses of marine shells. Archaeometry, 49, 117–133.CrossRefGoogle Scholar
  59. Maxwell, D. (2003). Growth coloration revisited: Assessing shell fishing seasonality in British Columbia. In R. L. Carlson (Ed.), Archaeology of coastal British Columbia: Essays in honour of Professor Philip M. Hobler (pp. 175–188). Burnaby: Archaeology Press.Google Scholar
  60. McCrea, J. M. (1950). On the isotopic chemistry of carbonates and a paleotemperature scale. The Journal of Chemical Physics, 5, 849–857.CrossRefGoogle Scholar
  61. Milner, N. (2001). At the cutting edge: Using thin sectioning to determine season of death of the European oyster, Ostrea edulis. Journal of Archaeological Science, 28(8), 861–873.CrossRefGoogle Scholar
  62. Monks, G. G., & Johnston, R. (1981). Estimating season of death from growth increment data: A critical review. ArchaeoZoologia, 2, 17–40.Google Scholar
  63. Passey, B. H. (2015). Biogeochemical tales told by isotope clumps. Science, 348, 394–395.CrossRefGoogle Scholar
  64. Pérez-Huerta, A., Etayo-Cadavid, M. F., Andrus, C. F. T., Jeffries, T. E., Watkins, C., Street, S. C., et al. (2013). El Niño impact on mollusk biomineralization—implications for trace element proxy reconstructions and the paleo-archaeological record. PLOS ONE, 8(2). doi: 10.1371/journal.pone.0054274.
  65. Prendergast, A. L., & Stevens, R. E. (2006). Mollusc (isotopes): Analyses in environmental archaeology. In C. Smith (Ed.), Encyclopaedia of global archaeology (pp. 5010–5019). New York: Springer.Google Scholar
  66. Price, T. D., & Brown, J. A. (1985). Prehistoric Hunter-Gatherers: The emergence of cultural complexity. Orlando: Academic.Google Scholar
  67. Pringle, H. (2009). A new look at the Mayas’ end. Science, 324(5926), 454–456.CrossRefGoogle Scholar
  68. Rhoads, D. C., & Pannella, G. (1970). The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia, 3, 143–161.CrossRefGoogle Scholar
  69. Rick, T. C., Robbins, J. A., & Ferguson, K. M. (2006). Stable isotopes from marine shells, ancient environments, and human subsistence on Middle Holocene Santa Rosa Island, California, USA. Journal of Island and Coastal Archaeology, 1, 233–254.CrossRefGoogle Scholar
  70. Rollins, H. B., Sandweiss, D. H., Brand, U., & Rollins, J. C. (1987). Growth increment and stable isotope analysis of marine bivalves: Implications for the geoarchaeological record of El Niño. Geoarchaeology, 2(3), 181–197.CrossRefGoogle Scholar
  71. Rowley-Conwy, P. (1993). Season and reason: The case for a regional interpretation of Mesolithic settlement patterns. Archeological Papers of the American Anthropological Association, 4, 179–188.CrossRefGoogle Scholar
  72. Schöne, B. R. (2008). The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Marine Letters, 28, 269–285.Google Scholar
  73. Schöne, B. R., & Surge, D. (2005). Special issue: Looking back over skeletal diaries—high-resolution environmental reconstructions from accretionary hard parts of aquatic organisms. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(1), 1–3.Google Scholar
  74. Schöne, B. R., & Surge, D. (2012). Bivalve sclerochronology and geochemistry. In P. Selden & J. Hardesty (Eds.), J.G. Carter (Coordinator), Part N, Bivalvia, Revised, Vol. 1. Treatise Online 46 (pp. 1–24). Lawrence: The University of Kansas, Paleontological Institute.Google Scholar
  75. Schöne, B. R., Zhang, Z., Radermacher, P., Thébault, J., Jacob, D. E., Nunn, E. V., & Maurer, A. (2011). Sr/Ca and Mg/Ca ratios of ontogenetically old, long-lived bivalve shells (Arctica islandica) and their function as paleotemperature proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 302, 52–64.CrossRefGoogle Scholar
  76. Schöne, B. R., Radermacher, P., Zhang, Z., & Jacob, D. E. (2013). Crystal fabrics and element impurities (Sr/Ca, Mg/Ca, and Ba/Ca) in shells of Arctica islandica—implications for paleoclimate reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 373, 50–59.Google Scholar
  77. Shackleton, N. J. (1973). Oxygen isotope analysis as a means of determining season of occupation of prehistoric midden sites. Archaeometry, 15, 133–141.CrossRefGoogle Scholar
  78. Stein, J. K. (1992). Deciphering a Shell Midden. San Diego: Academic.Google Scholar
  79. Stein, J. K., Deo, J. N., & Phillips, L. S. (2003). Big sites–short time: Accumulation rates in archaeological sites. Journal of Archaeological Science, 30(3), 297–316.CrossRefGoogle Scholar
  80. Stephens, M., Mattey, D., Gilbertson, D. D., & Murray-Wallace, C. V. (2008). Shell gathering from mangroves and the seasonality of the Southeast Asian Monsoon using high-resolution stable isotope analysis of the tropical estuarine bivalve (Gelonia erosa) from the Great Cave in Niah Sarawak: Methods and reconnaissance of mollusks of early and Holocene and modern times. Journal of Archaeological Science, 25, 2868–2697.Google Scholar
  81. Surge, D., & Barrett, J. H. (2012). Marine climatic seasonality during medieval times (10th to 12th centuries) based on isotopic records in Viking Age shells from Orkney, Scotland. Palaeogeography, Palaeoclimatology, Palaeoecology, 350, 236–246.CrossRefGoogle Scholar
  82. Surge, D., & Lohmann, K. C. (2008). Evaluating Mg/Ca ratios as a temperature proxy in the estuarine oyster, Crassostrea virginica. Journal of Geophysical Research: Biogeosciences, 113, G02001.CrossRefGoogle Scholar
  83. Surge, D., & Schöne, B. R. (2015). Bivalve sclerochronology. In W. J. Rink & J. Thompson (Eds.), Encyclopedia of scientific dating methods (pp. 108–115). Dordrecht: Springer.CrossRefGoogle Scholar
  84. Surge, D., & Walker, K. J. (2006). Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): Implications for reconstructing seasonality. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 182–190.CrossRefGoogle Scholar
  85. Tan, F. C. (1989). Stable carbon isotopes in dissolved inorganic carbon in marine and estuarine environments. In P. Fritz & J. C. Fontes (Eds.), Handbook of environmental isotope geochemistry (pp. 171–190). New York: Elsevier.Google Scholar
  86. Thomas, K. D. (2015a). Molluscs emergent, part I: Themes and trends in the scientific investigation of mollusc shells as resources for archaeological research. Journal of Archaeological Science, 56, 133–140.CrossRefGoogle Scholar
  87. Thomas, K. D. (2015b). Molluscs emergent, part II: Themes and trends in the scientific investigation of molluscs and their shells as past human resources. Journal of Archaeological Science, 56, 159–167.CrossRefGoogle Scholar
  88. Thompson, V. D., & Andrus, C. F. T. (2011). Evaluating mobility, monumentality, and feasting at the Sapelo Island shell ring complex. American Antiquity, 76(2), 315–343.CrossRefGoogle Scholar
  89. Thompson, V. D., & Andrus, C. F. T. (2013). Using oxygen isotope sclerochronology to evaluate the role of small islands among the Guale (AD 1325 to 1700) of the Georgia Coast, USA. Journal of Island and Coastal Archaeology, 8(2), 190–209.CrossRefGoogle Scholar
  90. Thompson, V. D., Pluckhahn, T. J., Das, O., & Andrus, C. F. T. (2015). Assessing village life and monument construction (cal. AD 65–1070) along the central Gulf Coast of Florida through stable isotope geochemistry. Journal of Archaeological Science: Reports, 4, 111–123.CrossRefGoogle Scholar
  91. Twaddle, R. W., Ulm, S., Hinton, J., Wurster, C. M., & Bird, M. I. (2015). Sclerochronological analysis of archaeological mollusk assemblages: Methods, applications, and future prospects. Archaeological and Anthropological Sciences, 8(2), 359–379. doi: 10.1007/s12520-015-0228-5.CrossRefGoogle Scholar
  92. Urey, H. C. (1947). The thermodynamic properties of isotopic substances. Journal of the Chemical Society, 562–581.Google Scholar
  93. Wang, T., Surge, D., & Walker, K. J. (2013). Seasonal climate change across the Roman Warm Period/Vandal Minimum transition using isotope sclerochronology in archaeological shells and otoliths, South Florida, USA. Quaternary International, 308, 230–241.Google Scholar
  94. Wang, T., Surge, D., & Lees, J. M. (2015). ClamR: A statistical evaluation of isotopic and temperature records in sclerochronologic studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 26–32.CrossRefGoogle Scholar
  95. West, C. F. (2013). Islands, coastlines, and stable isotopes: Advances in archaeology and geochemistry. Journal of Island and Coastal Archaeology, 8(2), 149–151.CrossRefGoogle Scholar
  96. Wilkinson, B. H., & Ivany, L. C. (2002). Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—a quantitative approach to the evaluation of incomplete data. Palaeogeography, Palaeoclimatology, Palaeoecology, 185, 95–114.Google Scholar
  97. Willey, G. R. (1953). Prehistoric settlement patterns in the Viru Valley, Peru. Washington, DC: Bureau of American Ethnology, Bulletin 155.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of ArchaeologyBoston UniversityBostonUSA
  2. 2.Department of ArchaeologyMemorial University of NewfoundlandSt John’sCanada
  3. 3.Department of Geological SciencesUniversity of AlabamaTuscaloosaUSA

Personalised recommendations