Skip to main content

An Introduction to Lensless Digital Holographic Microscopy

  • Chapter
  • First Online:
Miniature Fluidic Devices for Rapid Biological Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Digital Holographic Microscopy (DHM) is a technique that uses optical interference patterns to record a three-dimensional optical field for imaging, sensing, and microscopy applications. “Lensless” in-line DHM is the simplest arrangement, requiring no lenses, no mirrors, and typically only a light source, sample, and a digital imager chip such as a CCD or CMOS pixel array. Despite this simplicity, lensless in-line DHM is capable of producing high-resolution images over a wide field of view and allows researchers to record the amplitude and phase of a light field, and to digitally reconstruct the shape, thickness, 3D position, velocity, refractive index, and other parameters of cells or small particles. There are therefore many potential opportunities for combining in-line DHM with microfluidics , optical flow velocimetry, low-cost imaging, point-of-care diagnostics, single cell tracking, cell cytometry, counting, sorting, and lab-on-a-chip technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gabor D (1948) A new microscopic principle. Nature 161:777–778

    Article  CAS  Google Scholar 

  2. AB, NM (2014) The nobel prize in physics 1971. http://www.nobelprize.org/nobel_prizes/physics/laureates/1971/

  3. Goodman JW (2005) Introduction to Fourier optics. Roberts and Company Publishers

    Google Scholar 

  4. Goodman JW, Lawrence R (1967) Digital image formation from electronically detected holograms. Appl Phys Lett 11:77–79

    Article  Google Scholar 

  5. Lesem LB, Hirsch P, Jordan J Jr (1968) Scientific applications: computer synthesis of holograms for 3-D display. Commun ACM 11:661–674

    Article  Google Scholar 

  6. Garcia-Sucerquia J, Xu W, Jericho SK, Klages P, Jericho MH, Kreuzer HJ (2006) Digital in-line holographic microscopy. Appl Opt 45:836–850

    Article  Google Scholar 

  7. Kim MK (2010) Principles and techniques of digital holographic microscopy. J Photon Energy 018005–018005 (2010)

    Google Scholar 

  8. Kemper B, von Bally G (2008) Digital holographic microscopy for live cell applications and technical inspection. Appl Opt 47:A52–A61

    Article  Google Scholar 

  9. Xu W, Jericho M, Meinertzhagen I, Kreuzer H (2001) Digital in-line holography for biological applications. Proc Natl Acad Sci 98:11301–11305

    Article  CAS  Google Scholar 

  10. Schnars U, Jüptner WP (2002) Digital recording and numerical reconstruction of holograms. Meas Sci Technol 13:R85

    Article  CAS  Google Scholar 

  11. Latychevskaia T, Fink H-W (2015) Practical algorithms for simulation and reconstruction of digital in-line holograms. Appl Opt 54:2424

    Article  Google Scholar 

  12. Marquet P, Rappaz B, Pavillon N (2015) Quantitative phase-digital holographic microscopy: a new modality for live cell imaging. New Tech Dig Hologr 169–217

    Google Scholar 

  13. Yu X, Hong J, Liu C, Kim MK (2014) Review of digital holographic microscopy for three-dimensional profiling and tracking. Opt Eng 112306

    Google Scholar 

  14. Marquet P, Depeursinge C, Magistretti PJ (2014) Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders. Neurophotonics 1:020901–020901

    Article  Google Scholar 

  15. Alm K, El-Schich Z, Falck Miniotis M, Gjörloff Wingren A, Janicke B, Oredsson S (2013) Cells and holograms: holograms and digital holographic microscopy as a tool to study the morphology of living cells. https://doi.org/10.5772/54505

  16. Kim MK (2011) Digital holographic microscopy 162

    Google Scholar 

  17. Kemper B, Langehanenberg P, Bredebusch I, Schnekenburger J, von Bally G (2007) Techniques and applications of digital holographic microscopy for life cell imaging. In: European conference on biomedical optics proceedings, pp 66330D–66330D

    Google Scholar 

  18. Schnars U, Jueptner W (2005) Digital holography: digital hologram recording. Numerical reconstruction, and related techniques. Springer

    Google Scholar 

  19. Ozcan A, McLeod E (2016) Lensless imaging and sensing. Annu Rev Biomed Eng 18:77

    Article  CAS  Google Scholar 

  20. Greenbaum A, Luo W, Su T-W, Göröcs Z, Xue L, Isikman SO, Coskun AF, Mudanyali O, Ozcan A (2012) Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat Methods 9:889–895

    Article  CAS  Google Scholar 

  21. Roy M, Seo D, Oh S, Yang J-W, Seo S (2017) A review of recent progress in lens-free imaging and sensing. Biosens Bioelectron 88:130–143

    Article  CAS  Google Scholar 

  22. Ryle JP, McDonnell S, Sheridan JT (2011) Lensless multispectral digital in-line holographic microscope. J Biomed Opt 16:126004–12600417

    Article  Google Scholar 

  23. Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, Oztoprak C, Seo S, Khademhosseini B, Ozcan A (2010) Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417–1428

    Article  CAS  Google Scholar 

  24. Seo S, Su T-W, Tseng DK, Erlinger A, Ozcan A (2009) Lensfree holographic imaging for on-chip cytometry and diagnostics. Lab Chip 9:777–787

    Article  CAS  Google Scholar 

  25. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A (2010) Lensfree microscopy on a cellphone. Lab Chip 10:1787–1792

    Article  CAS  Google Scholar 

  26. Bishara W, Sikora U, Mudanyali O, Su T-W, Yaglidere O, Luckhart S, Ozcan A (2011) Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11:1276–1279

    Article  CAS  Google Scholar 

  27. Bishara W, Su T-W, Coskun AF, Ozcan A (2010) Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt Express 18:11181–11191

    Article  Google Scholar 

  28. Ozcan A, Demirci U (2008) Ultra wide-field lens-free monitoring of cells on-chip. Lab Chip 8:98–106

    Article  CAS  Google Scholar 

  29. Xu W, Jericho M, Meinertzhagen I, Kreuzer H (2001) Digital in-line holography for biological applications. Proc Natl Acad Sci 11301

    Google Scholar 

  30. Göröcs Z, Ozcan A (2013) On-chip biomedical imaging. IEEE Rev Biomed Eng 6:29–46

    Article  Google Scholar 

  31. Zhang X, Khimji I, Gurkan UA, Safaee H, Catalano PN, Keles HO, Kayaalp E, Demirci U (2011) Lensless imaging for simultaneous microfluidic sperm monitoring and sorting. Lab Chip 11:2535–2540

    Article  CAS  Google Scholar 

  32. Kim SB, Bae H, Cha JM, Moon SJ, Dokmeci MR, Cropek DM, Khademhosseini A (2011) A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab Chip 11:1801–1807

    Article  CAS  Google Scholar 

  33. Repetto L, Piano E, Pontiggia C (2004) Lensless digital holographic microscope with light-emitting diode illumination. Opt Lett 29:1132–1134

    Article  CAS  Google Scholar 

  34. Garcia-Sucerquia J (2013) Noise reduction in digital lensless holographic microscopy by engineering the light from a light-emitting diode. Appl Opt 52:A232–A239

    Article  Google Scholar 

  35. Isikman SO, Sencan I, Mudanyali O, Bishara W, Oztoprak C, Ozcan A (2010) Color and monochrome lensless on-chip imaging of Caenorhabditis elegans over a wide field-of-view. Lab Chip 10:1109–1112

    Article  CAS  Google Scholar 

  36. Pedrini G, Fröning P, Fessler H, Tiziani HJ (1998) In-line digital holographic interferometry. Appl Opt 37:6262–6269

    Article  CAS  Google Scholar 

  37. Barton J (1991) Removing multiple scattering and twin images from holographic images. Phys Rev Lett 67:3106

    Article  CAS  Google Scholar 

  38. Yamaguchi I, Zhang T (1997) Phase-shifting digital holography. Opt Lett 22:1268–1270

    Article  CAS  Google Scholar 

  39. Situ G, Ryle JP, Gopinathan U, Sheridan JT (2008) Generalized in-line digital holographic technique based on intensity measurements at two different planes. Appl Opt 47:711–717

    Article  CAS  Google Scholar 

  40. Lu Y, Liu Y, Tian X, Fu Y, Zhao J (2015) An ultra-compact multiplexed holographic microscope using a multiple-pinhole aperture. Opt Express 23:26779–26793

    Article  CAS  Google Scholar 

  41. Latychevskaia T, Fink H-W (2007) Solution to the twin image problem in holography. Phys Rev Lett 98:233901

    Article  Google Scholar 

  42. Cuche E, Marquet P, Depeursinge C (2000) Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl Opt 39:4070–4075

    Article  CAS  Google Scholar 

  43. Denis L, Fournier C, Fournel T, Ducottet C (2008) Numerical suppression of the twin image in in-line holography of a volume of micro-objects. Meas Sci Technol 19:074004

    Article  Google Scholar 

  44. Ratcliffe J (1956) Some aspects of diffraction theory and their application to the ionosphere. Rep Prog Phys 19:188

    Article  Google Scholar 

  45. Molony KM, Hennelly BM, Kelly DP, Naughton TJ (2010) Reconstruction algorithms applied to in-line Gabor digital holographic microscopy. Opt Commun 283:903–909

    Article  CAS  Google Scholar 

  46. Jericho M, Kreuzer H, Kanka M, Riesenberg R (2012) Quantitative phase and refractive index measurements with point-source digital in-line holographic microscopy. Appl Opt 51:1503–1515

    Article  CAS  Google Scholar 

  47. Ryle JP, Molony KM, McDonnell S, Naughton TJ, Sheridan JT (2009) Multispectral lensless digital holographic microscope: imaging MCF-7 and MDA-MB-231 cancer cell cultures. SPIE Opt Eng + Appl Proc 744206–744206

    Google Scholar 

  48. Su T-W, Xue L, Ozcan A (2012) High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci 109:16018–16022

    Article  CAS  Google Scholar 

  49. Sheng J, Malkiel E, Katz J (2006) Digital holographic microscope for measuring three-dimensional particle distributions and motions. Appl Opt 45:3893–3901

    Article  Google Scholar 

  50. Choi Y-S, Lee S-J (2009) Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy. Appl Opt 48:2983–2990

    Article  Google Scholar 

  51. Xu W, Jericho M, Kreuzer H, Meinertzhagen I (2003) Tracking particles in four dimensions with in-line holographic microscopy. Opt Lett 28:164–166

    Article  CAS  Google Scholar 

  52. Kempkes M, Darakis E, Khanam T, Rajendran A, Kariwala V, Mazzotti M, Naughton TJ, Asundi AK (2009) Three dimensional digital holographic profiling of micro-fibers. Opt Express 17:2938–2943

    Article  CAS  Google Scholar 

  53. Tian L, Loomis N, Domínguez-Caballero JA, Barbastathis G (2010) Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography. Appl Opt 49:1549–1554

    Article  Google Scholar 

  54. Garcia-Sucerquia J, Xu W, Jericho S, Jericho M, Kreuzer HJ (2008) 4-D imaging of fluid flow with digital in-line holographic microscopy. Opt-Int J Light Electr Opt 119:419–423

    Article  Google Scholar 

  55. Jericho S, Garcia-Sucerquia J, Xu W, Jericho M, Kreuzer H (2006) Submersible digital in-line holographic microscope. Rev Sci Instrum 77:043706

    Article  Google Scholar 

  56. Shimobaba T, Yamanashi H, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R, Masuda N, Ito T (2013) In-line digital holographic microscopy using a consumer scanner. Sci Rep 3

    Google Scholar 

  57. Stybayeva G, Mudanyali O, Seo S, Silangcruz J, Macal M, Ramanculov E, Dandekar S, Erlinger A, Ozcan A, Revzin A (2010) Lensfree holographic imaging of antibody microarrays for high-throughput detection of leukocyte numbers and function. Anal Chem 82:3736–3744

    Article  CAS  Google Scholar 

  58. Singh VR, Miao J, Wang Z, Hegde G, Asundi A (2007) Dynamic characterization of MEMS diaphragm using time averaged in-line digital holography. Opt Commun 280:285–290

    Article  CAS  Google Scholar 

  59. Repetto L, Chittofrati R, Piano E, Pontiggia C (2005) Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers. Opt Commun 251:44–50

    Article  CAS  Google Scholar 

  60. Oh C, Isikman SO, Khademhosseinieh B, Ozcan A (2010) On-chip differential interference contrast microscopy using lensless digital holography. Opt Express 18:4717–4726

    Article  CAS  Google Scholar 

  61. Zakrisson J, Schedin S, Andersson M (2015) Cell shape identification using digital holographic microscopy. Appl Opt 54:7442–7448

    Article  CAS  Google Scholar 

  62. Bishara W, Zhu H, Ozcan A (2010) Holographic opto-fluidic microscopy. Opt Express 18:27499–27510

    Article  CAS  Google Scholar 

  63. Kemper B, Langehanenberg P, Von Bally G (2007) Digital holographic microscopy. Opt Photon 2:41–44

    Google Scholar 

  64. Marquet P, Rappaz B, Magistretti PJ, Cuche E, Emery Y, Colomb T, Depeursinge C (2005) Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt Lett 30:468–470

    Article  Google Scholar 

  65. Carl D, Kemper B, Wernicke G, von Bally G (2004) Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl Opt 43:6536–6544

    Article  Google Scholar 

  66. Rappaz B, Barbul A, Emery Y, Korenstein R, Depeursinge C, Magistretti PJ, Marquet P (2008) Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer. Cytometry Part A 73:895–903

    Article  Google Scholar 

  67. Kim K, Choe K, Park I, Kim P, Park Y (2016) Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice. Sci Rep 6

    Google Scholar 

  68. Jourdain P, Pavillon N, Moratal C, Boss D, Rappaz B, Depeursinge C, Marquet P, Magistretti PJ (2011) Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study. J Neurosci 31:11846–11854

    Article  CAS  Google Scholar 

  69. Pavillon N, Kühn J, Moratal C, Jourdain P, Depeursinge C, Magistretti PJ, Marquet P (2012) Early cell death detection with digital holographic microscopy. PLoS ONE 7:e30912

    Article  CAS  Google Scholar 

  70. Kemper B, Vollmer A, Rommel CE, Schnekenburger J, von Bally G (2011) Simplified approach for quantitative digital holographic phase contrast imaging of living cells. J Biomed Opt 16:026014–026014

    Article  Google Scholar 

  71. Miccio L, Memmolo P, Merola F, Fusco S, Netti P, Ferraro P (2014) A new 3D tracking method for cell mechanics investigation exploiting the capabilities of digital holography in microscopy. SPIE BiOS Proc 89471L–89471L

    Google Scholar 

  72. Kemper B, Schubert R, Dartmann S, Vollmer A, Ketelhut S, von Bally G (2013) Improved quantitative phase contrast in self-interference digital holographic microscopy and sensing dynamic refractive index changes of the cytoplasm using internalized microspheres as probes. SPIE BiOS 85890M–85890M

    Google Scholar 

  73. Lenz P, Bettenworth D, Krausewitz P, Brückner M, Ketelhut S, von Bally G, Domagk D, Kemper B (2013) Digital holographic microscopy quantifies the degree of inflammation in experimental colitis. Integr Biol 5:624–630

    Article  Google Scholar 

  74. Rappaz B, Marquet P, Cuche E, Emery Y, Depeursinge C, Magistretti P (2005) Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Express 13:9361–9373

    Article  Google Scholar 

  75. Charrière F, Pavillon N, Colomb T, Depeursinge C, Heger TJ, Mitchell EA, Marquet P, Rappaz B (2006) Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt Express 14:7005–7013

    Article  Google Scholar 

  76. Shimobaba T, Weng J, Sakurai T, Okada N, Nishitsuji T, Takada N, Shiraki A, Masuda N, Ito T (2012) Computational wave optics library for C++: CWO++ library. Comput Phys Commun 183:1124–1138

    Article  CAS  Google Scholar 

  77. Seo S, Isikman SO, Sencan I, Mudanyali O, Su T-W, Bishara W, Erlinger A, Ozcan A (2010) High-throughput lens-free blood analysis on a chip. Anal Chem 82:4621–4627

    Article  CAS  Google Scholar 

  78. Ryle JP, McDonnell S, Glennon B, Sheridan JT (2013) Calibration of a digital in-line holographic microscopy system: depth of focus and bioprocess analysis. Appl Opt 52:C78–C87

    Article  Google Scholar 

  79. Molaei M, Sheng J (2014) Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm. Opt Express 22:32119–32137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan C. Lindquist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lindquist, N.C. (2018). An Introduction to Lensless Digital Holographic Microscopy. In: Oh, SH., Escobedo, C., Brolo, A. (eds) Miniature Fluidic Devices for Rapid Biological Detection. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_6

Download citation

Publish with us

Policies and ethics