Skip to main content

Enhanced Plasmonic Detection with Dielectrophoretic Concentration

  • Chapter
  • First Online:
Miniature Fluidic Devices for Rapid Biological Detection

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 974 Accesses

Abstract

Performance of surface-based plasmonic sensors is often plagued by diffusion-limited transport, which complicates detection from low-concentration analytes. By harnessing gradient forces available from the sharp metallic edges, tips, or gaps that are often found in the plasmonic sensors, it is possible to combine a dielectrophoretic concentration approach to overcome mass transport limitations. A transparent electrode is combined with the plasmonic substrates that allow dielectrophoresis without interfering with the optical detection. Detection from pM-level protein solution is expedited by more than 1000 times as compared to the case of diffusion. Also, enhanced Raman spectroscopic detection is demonstrated using carbon nanotubes and biological particles. Finally, to improve the performance of dielectrophoresis, the gap between the electrodes is reduced to sub-10 nm and ultralow voltage trapping experiments are shown. The ultralow power electronic operation combined with plasmonic detection can enable high-density on-chip integration and portable biosensing .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Liedberg B, Nylander C, Lundstrom, I (1983) Surface plasmon resonance for gas detection and biosensing. Elsevier

    Google Scholar 

  2. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuat B-Chem 54(1–2):3–15

    Article  CAS  Google Scholar 

  3. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  4. Sheehan P, Whitman L (2005) Detection limits for nanoscale biosensors. Nano Lett 5(4):803–807

    Article  CAS  Google Scholar 

  5. Squires T, Messinger R, Manalis S (2008) Making it stick: convection, reaction and diffusion in surface-based biosensors. Nat Biotechnol 26(4):417–426

    Article  CAS  Google Scholar 

  6. Feuz L, Höök F, Reimhult E (2012) Design of intelligent surface modifications and optimal liquid handling for nanoscale bioanalytical sensors. intelligent surfaces in biotechnology: scientific and engineering concepts, enabling technologies, and translation to bio-oriented applications, pp 71–122

    Google Scholar 

  7. Cho HS et al (2009) Label-free and highly sensitive biomolecular detection using SERS and electrokinetic preconcentration. Lab Chip 9(23):3360–3363

    Article  CAS  Google Scholar 

  8. De Angelis F et al (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photon 5(11):682–687

    Article  Google Scholar 

  9. Eftekhari F et al (2009) Nanoholes as nanochannels: flow-through plasmonic sensing. Anal Chem 81(11):4308–4311

    Article  CAS  Google Scholar 

  10. Jonsson MP et al (2010) Locally functionalized short-range ordered nanoplasmonic pores for bioanalytical sensing. Anal Chem 82(5):2087–2094

    Article  CAS  Google Scholar 

  11. Escobedo C et al (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12(3):1592–1596

    Article  CAS  Google Scholar 

  12. Brolo AG (2012) Plasmonics for future biosensors. Nat Photon 709

    Google Scholar 

  13. Barik A et al (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012

    Article  CAS  Google Scholar 

  14. Im H et al (2010) Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett 10(6):2231–2236

    Article  CAS  Google Scholar 

  15. Barik A, Chen X, Oh S-H (2016) Ultralow-power electronic trapping of nanoparticles with sub-10 nm gold nanogap electrodes. Nano Lett 16(10):6317–6324

    Article  CAS  Google Scholar 

  16. Cherukulappurath S et al (2013) Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing. Nano Lett 13(11):5635–5641

    Article  CAS  Google Scholar 

  17. Jose J et al (2014) Individual template-stripped conductive gold pyramids for tip-enhanced dielectrophoresis. ACS Photon 1(5):464–470

    Article  CAS  Google Scholar 

  18. Barik A et al (2016) Dielectrophoresis-assisted raman spectroscopy of intravesicular analytes on metallic pyramids. Anal Chem 88(3):1704–1710

    Article  CAS  Google Scholar 

  19. Pohl HA, Pohl H (1978) Dielectrophoresis: the behavior of neutral matter in nonuniform electric fields. Cambridge University Press Cambridge

    Google Scholar 

  20. Brolo AG et al (2004) Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. Langmuir 20(12):4813–4815

    Article  CAS  Google Scholar 

  21. Dahlin A et al (2005) Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 5043–5048

    Google Scholar 

  22. Tetz KA, Pang L, Fainman Y (2006) High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. Opt Lett 31(10):1528–1530

    Article  Google Scholar 

  23. Lesuffleur A et al (2007) Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Appl Phys Lett

    Google Scholar 

  24. Yang JC et al (2008) Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioorobes. Nano Lett 8(9):2718–2724

    Article  CAS  Google Scholar 

  25. Ebbesen TW et al (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391(6668):667–669

    Article  CAS  Google Scholar 

  26. Sinton D et al (2009) Microfluidic and nanofluidic integration of plasmonic substrates for biosensing. In: Proceedings of SPIE

    Google Scholar 

  27. Jackson JD (1998) Classical electrodynamics. 3rd ed. Wiley

    Google Scholar 

  28. Dahlin AB, Zahn R, Voros J (2012) Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor. Nanoscale 4(7):2339–2351

    Article  CAS  Google Scholar 

  29. Holzel R et al (2005) Trapping single molecules by dielectrophoresis. Phys Rev Lett. 95(12)

    Google Scholar 

  30. Morgan H, Green NG (2003) AC Electrokinetics: colloids and particles. Research Studies Press, Baldock

    Google Scholar 

  31. González Flecha FL, Levi V (2003) Determination of the molecular size of BSA by fluorescence anisotropy. Biochem Mol Biol Educat. 31(5): 319–322

    Google Scholar 

  32. Hibbert DB, Gooding JJ, Erokhin P (2002) Kinetics of irreversible adsorption with diffusion: application to biomolecule immobilization. Langmuir 18(5):1770–1776

    Article  CAS  Google Scholar 

  33. Dahlin AB (2012) Plasmonic biosensors: an integrated view of refractometric detection. vol. 4, Ios Press

    Google Scholar 

  34. Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  35. Hulman M, Tajmar M (2007) The dielectrophoretic attachment of nanotube fibres on tungsten needles. Nanotechnology 18(14)

    Google Scholar 

  36. Freedman KJ et al (2016) Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping. Nat Commun 7:10217

    Article  CAS  Google Scholar 

  37. Freedman KJ et al (2016) On-demand surface- and tip-enhanced raman spectroscopy using dielectrophoretic trapping and nanopore sensing. ACS Photon 3(6):1036–1044

    Article  CAS  Google Scholar 

  38. Yeo W et al (2012) Dielectrophoretic concentration of low-abundance nanoparticles using a nanostructured tip. Nanotechnology 23(48)

    Google Scholar 

  39. Maier SA et al (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232

    Article  CAS  Google Scholar 

  40. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  41. Pang Y, Gordon R (2012) Optical trapping of a single protein. Nano Lett 12(1):402–406

    Article  CAS  Google Scholar 

  42. Novotny L, Hecht B (2006) Principles of nano-optics

    Google Scholar 

  43. Bouhelier A et al (2003) Near-field second-harmonic generation induced by local field enhancement. Phys Rev Lett 90(1)

    Google Scholar 

  44. Yeo BS et al (2009) Tip-enhanced Raman spectroscopyIts status, challenges and future directions. Chem Phys Lett 472(1–3):1–13

    Article  CAS  Google Scholar 

  45. Lindquist N et al (2010) Three-dimensional plasmonic nanofocusing. Nano Lett, 1369–1373

    Google Scholar 

  46. Johnson T et al (2012) Highly reproducible near-field optical imaging with sub-20-nm resolution based on template-stripped gold pyramids. ACS Nano 6(10):9168–9174

    Article  CAS  Google Scholar 

  47. Henzie J et al (2009) Nanofabrication of plasmonic structures. Ann Rev Phys Chem 147–165

    Google Scholar 

  48. Cherukulappurath S et al (2013) Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing. Nano Lett 13(11):5635–5641

    Article  CAS  Google Scholar 

  49. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  Google Scholar 

  50. Belousov VV et al (2006) Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat Methods 3(4):281–286

    Article  CAS  Google Scholar 

  51. Schaefer JJ, Ma C, Harris JM (2012) Confocal Raman microscopy probing of temperature-controlled release from individual. Optical Trapped Phosphol Ves Anal Chem 84(21):9505–9512

    CAS  Google Scholar 

  52. Klein K et al (2012) Label-free live-cell imaging with confocal Raman microscopy. Biophys J 102(2):360–368

    Article  CAS  Google Scholar 

  53. Wang Y et al (2007) Raman scattering study of molecules adsorbed on ZnS nanocrystals. J Raman Spectrosc 38(1):34–38

    Article  Google Scholar 

  54. Wang Z, Rothberg LJ (2005) Origins of blinking in single-molecule raman spectroscopy. J Phys Chem B 109(8):3387–3391

    Article  CAS  Google Scholar 

  55. Baldwin J et al (1996) Integrated optics evanescent wave surface enhanced raman scattering (IO-EWSERS) of mercaptopyridines on a planar optical chemical bench: binding of hydrogen and copper ion. Langmuir 12(26):6389–6398

    Article  CAS  Google Scholar 

  56. Finnegan JM et al (1996) Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic β-cells. J Neurochem 66(5):1914–1923

    Article  CAS  Google Scholar 

  57. Colliver TL et al (2000) VMAT-Mediated changes in quantal size and vesicular volume. J Neurosci 20(14):5276–5282

    CAS  Google Scholar 

  58. Saito R et al (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60(3):413–550

    Article  CAS  Google Scholar 

  59. Nugraha ART et al (2010) Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. Appl Phys Lett 97(9):091905

    Article  Google Scholar 

  60. Weisman RB, Bachilo SM (2003) Dependence of Optical Transition Energies on Structure for Single-Walled Carbon Nanotubes in Aqueous Suspension: an empirical kataura plot. Nano Lett 3(9):1235–1238

    Article  CAS  Google Scholar 

  61. Cançado LG et al (2009) Mechanism of near-field Raman enhancement in one-dimensional systems. Phys Rev Lett 103(18):186101

    Article  Google Scholar 

  62. Fan F, Bard A (1995) Electrochemical detection of single molecules. Science 267(5199):871–874

    Article  CAS  Google Scholar 

  63. Odom TW et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  CAS  Google Scholar 

  64. Bharadwaj P, Bouhelier A, Novotny L (2011) Electrical excitation of surface plasmons. Phys Rev Lett 106(22):226802

    Article  Google Scholar 

  65. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge, England

    Google Scholar 

  66. Squires TM (2009) Induced-charge electrokinetics: fundamental challenges and opportunities. Lab Chip 9(17):2477–2483

    Article  CAS  Google Scholar 

  67. Grigorenko AN et al (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Phot 2(6):365–370

    Article  CAS  Google Scholar 

  68. Geiselmann M et al (2013) Three-dimensional optical manipulation of a single electron spin. Nat Nano 8(3):175–179

    Article  CAS  Google Scholar 

  69. Yang AHJ et al (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457(7225):71–75

    Article  CAS  Google Scholar 

  70. Novotny L, Bian R, Xie X (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4):645–648

    Article  CAS  Google Scholar 

  71. Juan ML et al (2009) Self-induced back-action optical trapping of dielectric nanoparticles. Nat Phys 5(12):915–919

    Article  CAS  Google Scholar 

  72. Ndukaife JC et al (2016) Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. Nat Nano 11(1):53–59

    Article  CAS  Google Scholar 

  73. Barik A et al (2014) Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays. Nano Lett 14(4):2006–2012

    Article  CAS  Google Scholar 

  74. Bezryadin A, Dekker C, Schmid G (1997) Electrostatic trapping of single conducting nanoparticles between nanoelectrodes. Appl Phys Lett 71(9):1273–1275

    Article  CAS  Google Scholar 

  75. Chen X et al (2013) Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves. Nat Commun 4:2361

    Google Scholar 

  76. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195

    Article  CAS  Google Scholar 

  77. Castellanos A et al (2003) Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws. J Phys D Appl Phys 36(20):2584

    Article  CAS  Google Scholar 

  78. Curto AG et al (2010) Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329(5994):930–933

    Article  CAS  Google Scholar 

  79. Pelton M (2015) Modified spontaneous emission in nanophotonic structures. Nat Phot 9(7):427–435

    Article  CAS  Google Scholar 

  80. Kress SJP et al (2015) Wedge waveguides and resonators for quantum plasmonics. Nano Lett 15(9):6267–6275

    Article  CAS  Google Scholar 

  81. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Hyun Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, A., Oh, SH. (2018). Enhanced Plasmonic Detection with Dielectrophoretic Concentration. In: Oh, SH., Escobedo, C., Brolo, A. (eds) Miniature Fluidic Devices for Rapid Biological Detection. Integrated Analytical Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-64747-0_5

Download citation

Publish with us

Policies and ethics