Skip to main content

Liganded Silver and Gold Quantum Clusters: Background of Their Structural, Electronic, and Optical Properties

  • Chapter
  • First Online:
Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

Abstract

The purpose of this chapter is first to introduce physical background allowing one to gain understanding about the connection between electronic energy quantization in metal nanoclusters and their optical properties. The optical response, in terms of electronic transitions whose positions and intensities are predicted by sophisticated quantum mechanical calculations, will be described. The concept of ligand-protected metal clusters will be introduced, and we then will summarize briefly the synthetic work on liganded quantum clusters of gold and silver and their characterization. Finally, we will discuss the link between their structural, electronic, and optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Christensen NE (1972) The band structure of silver and optical interband transitions. Phys Status Solidi (b) 54:551

    Google Scholar 

  3. Christensen NE (1978) Spin-orbit projected d densities-of-states of Pd, Ag, Pt, and Au. J Phys F: Met Phys 8:L51

    Article  Google Scholar 

  4. Jin R (2010) Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2:343

    Article  Google Scholar 

  5. Ashcroft NW, Mermin N (1976) Solid state physics. Harcourt Inc., Orlando

    Google Scholar 

  6. Bonačić-Koutecky V, Veyret V, Mitrić R (2001) Ab initio study of the absorption spectra of Agn (n = 5–8) clusters. J Chem Phys 115:10450

    Article  Google Scholar 

  7. Bonačić-Koutecky V, Mitrić R, Bürgel C, Noack H, Hartmann M, Pittner J (2005) Tailoring the chemical reactivity and optical properties of clusters by size, structures and lasers. Eur Phys J D 34:113

    Article  Google Scholar 

  8. Bellina B, Compagnon I, Bertorelle F, Broyer M, Antoine R, Dugourd P, Gell L, Kulesza A, Mitrić R, Bonačić-Koutecky V (2011) Structural and optical properties of isolated noble metal-glutathione complexes. Insight into the chemistry of liganded nanoclusters. J Phys Chem C 115:24549

    Article  Google Scholar 

  9. Markus R, Schwentner N (1987) Physics and chemistry of small clusters. Plenum, New York

    Google Scholar 

  10. Harbich W, Fedrigo S, Buttet J, Lindsay DM (1991) Optical spectroscopy on size selected gold clusters deposited in rare gas matrices. Z Phys D At, Mol Clusters 19:157

    Article  Google Scholar 

  11. Harbich W, Fedrigo S, Buttet J, Lindsay DM (1992) Deposition of mass selected gold clusters in solid krypton. J Chem Phys 96:8104

    Article  Google Scholar 

  12. Collings BA, Athanassenas K, Lacombe D, Rayner DM, Hackett PA (1994) Optical absorption spectra of Au7, Au9, Au11, and Au13, and their cations: gold clusters with 6, 7, 8, 9, 10, 11, 12, and 13s-electrons. J Chem Phys 101:3506

    Article  Google Scholar 

  13. Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Met Phys 4:999

    Article  Google Scholar 

  14. Harbich W, Fedrigo S, Meyer F, Lindsay DM, Lignieres J, Rivoal JC, Kreisle D (1990) Deposition of mass selected silver clusters in rare gas matrices. J Chem Phys 93:8535

    Article  Google Scholar 

  15. Sieber C, Buttet J, Harbich W, Félix C, Mitrić R, Bonačić-Koutecký V (2004) Isomer-specific spectroscopy of metal clusters trapped in a matrix: Ag9. Phys Rev A 70:041201

    Article  Google Scholar 

  16. Chen W, Wang Z, Lin Z, Lin L, Fang K, Xu Y, Su M, Lin J (1998) Photostimulated luminescence of AgI clusters in zeolite-Y. J Appl Phys 83:3811

    Article  Google Scholar 

  17. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291:103

    Article  Google Scholar 

  18. Hild U, Dietrich G, Krückeberg S, Lindinger M, Lützenkirchen K, Schweikhard L, Walther C, Ziegler J (1998) Time-resolved photofragmentation of stored silver clusters Ag + n (n = 8–21). Phys Rev A: At Mol Opt Phys 57:7

    Google Scholar 

  19. Zheng J, Dickson RM (2002) Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 124:13982

    Google Scholar 

  20. Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, Dickson RM (2008) Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 130:5038

    Article  Google Scholar 

  21. Wu Z, Jin R (2010) On the ligand’s role in the fluorescence of gold nanoclusters. Nano Lett 10:2568

    Article  Google Scholar 

  22. Diez I, Ras RHA (1963) Fluorescent silver nanoclusters. Nanoscale 2011:3

    Google Scholar 

  23. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc, Chem Commun 7:801

    Google Scholar 

  24. Negishi Y, Nobusada K, Tsukuda T (2005) Glutathione-protected gold clusters revisited: bridging the gap between gold(I)—thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc 127:5261

    Article  Google Scholar 

  25. Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T (2004) Magic-numbered Aun clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J Am Chem Soc 126:6518

    Article  Google Scholar 

  26. Schaaff TG, Knight G, Shafigullin MN, Borkman RF, Whetten RL (1998) Isolation and selected properties of a 10.4 kDa gold: glutathione cluster compound. J Phys Chem B 102:10643

    Article  Google Scholar 

  27. Zeng C, Chen Y, Das A, Jin R (2015) Transformation chemistry of gold nanoclusters: from one stable size to another. J Phys Chem Lett 6:2976

    Article  Google Scholar 

  28. Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346

    Article  Google Scholar 

  29. Jin R (2015) Atomically precise metal nanoclusters: stable sizes and optical properties. Nanoscale 7:1549

    Article  Google Scholar 

  30. Harkness KM, Cliffel DE, McLean JA (2010) Characterization of thiolate-protected gold nanoparticles by mass spectrometry. Analyst 135:868

    Article  Google Scholar 

  31. Dass A, Stevenson A, Dubay GR, Tracy JB, Murray RW (2008) Nanoparticle MALDI-TOF mass spectrometry without fragmentation: Au25(SCH2CH2Ph)18 and mixed monolayer Au25(SCH2CH2Ph)18−x(L)x. J Am Chem Soc 130:5940

    Article  Google Scholar 

  32. Kumar S, Bolan MD, Bigioni TP (2010) Glutathione-stabilized magic-number silver cluster compounds. J Am Chem Soc 132:13141

    Article  Google Scholar 

  33. Hamouda R, Bertorelle F, Rayane D, Antoine R, Broyer M, Dugourd P (2013) Glutathione capped gold AuN(SG)M clusters studied by isotope-resolved mass spectrometry. Int J Mass Spectrom 335:1

    Article  Google Scholar 

  34. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430

    Article  Google Scholar 

  35. Wu Z, Gayathri C, Gil RR, Jin R (2009) Probing the structure and charge state of glutathione-capped Au25(SG)18 clusters by NMR and mass spectrometry. J Am Chem Soc 131:6535

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Antoine .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Antoine, R., Bonačić-Koutecký, V. (2018). Liganded Silver and Gold Quantum Clusters: Background of Their Structural, Electronic, and Optical Properties. In: Liganded silver and gold quantum clusters. Towards a new class of nonlinear optical nanomaterials. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-64743-2_2

Download citation

Publish with us

Policies and ethics