Skip to main content

Performance Assessment in Minimally Invasive Surgery

  • Chapter
  • First Online:
  • 940 Accesses

Abstract

Minimally invasive surgery is a growing field, particularly with the addition of robotic-assisted options to laparoscopic tools. With this gain in technology comes the responsibility to properly train and assess the development and maintenance of surgical skills in physicians. Doing so is complicated, with countless methods of implementation, means of validation, curricula, and devices for the evaluation of both training and surgical performance. This chapter will review various ways of assessing the minimally invasive surgeon, including self-calculating scores generated by virtual reality simulators, curriculums complete with didactic and psychomotor training, analysis of technical and nontechnical skills, and emerging uses of both technology and human resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fuchs KH. Minimally invasive surgery. Endoscopy. 2002;34(2):154–9.

    Article  CAS  PubMed  Google Scholar 

  2. American Educational Research Association.; American Psychological Association.; National Council on Measurement in Education.; Joint Committee on Standards for Educational and Psychological Testing (U.S.). Standards for educational and psychological testing. Washington, DC: American Educational Research Association; 1985.

    Google Scholar 

  3. American Educational Research Association.; American Psychological Association, et al. Standards for educational and psychological testing. Washington, DC: American Educational Research Association; 1999.

    Google Scholar 

  4. Brown T. Construct validity: A unitary concept for occupational therapy assessment and measurement. Hong Kong J Occup Ther. 2010;20(1):30–42.

    Article  Google Scholar 

  5. Fried GM, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg. 2004;240(3):518–25; discussion 525–8

    Article  PubMed  PubMed Central  Google Scholar 

  6. McCluney AL, et al. FLS simulator performance predicts intraoperative laparoscopic skill. Surg Endosc. 2007;21(11):1991–5.

    Article  CAS  PubMed  Google Scholar 

  7. Soper NJ, Fried GM. The fundamentals of laparoscopic surgery: its time has come. Bull Am Coll Surg. 2008;93(9):30–2.

    PubMed  Google Scholar 

  8. Sroka G, et al. Fundamentals of laparoscopic surgery simulator training to proficiency improves laparoscopic performance in the operating room-a randomized controlled trial. Am J Surg. 2010;199(1):115–20.

    Article  PubMed  Google Scholar 

  9. Sweet RM, et al. Introduction and validation of the American Urological Association Basic Laparoscopic Urologic Surgery skills curriculum. J Endourol. 2012;26(2):190–6.

    Article  PubMed  Google Scholar 

  10. Kowalewski TM, et al. Validation of the AUA BLUS tasks. J Urol. 2016;195(4 Pt 1):998–1005.

    Article  PubMed  Google Scholar 

  11. Wilson M, et al. MIST VR: a virtual reality trainer for laparoscopic surgery assesses performance. Ann R Coll Surg Engl. 1997;79(6):403.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ahlberg G, et al. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193(6):797–804.

    Article  PubMed  Google Scholar 

  13. Rosser JC, Rosser LE, Savalgi RS. Skill acquisition and assessment for laparoscopic surgery. Arch Surg. 1997;132(2):200–4.

    Article  CAS  PubMed  Google Scholar 

  14. Korndorffer JR, et al. Simulator training for laparoscopic suturing using performance goals translates to the operating room. J Am Coll Surg. 2005;201(1):23–9.

    Article  PubMed  Google Scholar 

  15. Van Sickle KR, et al. Prospective, randomized, double-blind trial of curriculum-based training for intracorporeal suturing and knot tying. J Am Coll Surg. 2008;207(4):560–8.

    Article  PubMed  Google Scholar 

  16. Smith CD, et al. Assessing laparoscopic manipulative skills. Am J Surg. 2001;181(6):547–50.

    Article  CAS  PubMed  Google Scholar 

  17. Cosman PH, et al. Virtual reality simulators: current status in acquisition and assessment of surgical skills. ANZ J Surg. 2002;72(1):30–4.

    Article  PubMed  Google Scholar 

  18. Stefanidis D, et al. Skill retention following proficiency-based laparoscopic simulator training. Surgery. 2005;138(2):165–70.

    Article  PubMed  Google Scholar 

  19. Hiemstra E, et al. Retention of basic laparoscopic skills after a structured training program. Gynecol Surg. 2009;6(3):229–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Intuitive Surgical Inc. da Vinci Residency & Fellowship Training Program. 2016. 12 Oct 2016.

    Google Scholar 

  21. Ramos P, et al. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014;113(5):836–42.

    Article  PubMed  Google Scholar 

  22. Simulated Surgical Systems LLC. RoSS II robotic surgery simulator; 2017. 3/14/2017.

    Google Scholar 

  23. DiMaio S, Hasser C. The da Vinci research interface. In: MICCAI Workshop on Systems and Arch. for Computer Assisted Interventions, Midas Journal; 2008.

    Google Scholar 

  24. Kumar R, et al. Assessing system operation skills in robotic surgery trainees. Int J Med Robot. 2012;8(1):118–24.

    Article  PubMed  Google Scholar 

  25. Lin HC, et al. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg. 2006;11(5):220–30.

    Article  PubMed  Google Scholar 

  26. McDonough PS, et al. Initial validation of the ProMIS surgical simulator as an objective measure of robotic task performance. J Robot Surg. 2011;5(3):195–9.

    Article  PubMed  Google Scholar 

  27. Brand TC. Educational curricula, simulation, and skills assessment for the da Vinci platform, in Society of Government Service Urologists, San Diego. 2015.

    Google Scholar 

  28. Jonsson MN, et al. ProMIS can serve as a da Vinci(R) simulator – a construct validity study. J Endourol. 2011;25(2):345–50.

    Article  PubMed  Google Scholar 

  29. Tausch TJ, et al. Content and construct validation of a robotic surgery curriculum using an electromagnetic instrument tracker. J Urol. 2012;188(3):919–23.

    Article  PubMed  Google Scholar 

  30. Chmarra MK, et al. The influence of experience and camera holding on laparoscopic instrument movements measured with the TrEndo tracking system. Surg Endosc. 2007;21(11):2069–75.

    Article  CAS  PubMed  Google Scholar 

  31. D’Angelo A-LD, et al. Idle time: an underdeveloped performance metric for assessing surgical skill. Am J Surg. 2015;209(4):645–51.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crochet P, et al. Development of an evidence-based training program for laparoscopic hysterectomy on a virtual reality simulator. Surg Endosc. 2017; 31(6):2474-2482.

    Google Scholar 

  33. Martin JA, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84:273–8.

    Article  CAS  PubMed  Google Scholar 

  34. Gallagher AG, et al. Objective structured assessment of technical skills and checklist scales reliability compared for high stakes assessments. ANZ J Surg. 2014;84(7–8):568–73.

    Article  PubMed  Google Scholar 

  35. Datta V, et al. The surgical efficiency score: a feasible, reliable, and valid method of skills assessment. Am J Surg. 2006;192(3):372–8.

    Article  PubMed  Google Scholar 

  36. Dath D, et al. Toward reliable operative assessment: the reliability and feasibility of videotaped assessment of laparoscopic technical skills. Surg Endosc. 2004;18(12):1800–4.

    Article  CAS  PubMed  Google Scholar 

  37. Vassiliou MC, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190(1):107–13.

    Article  PubMed  Google Scholar 

  38. Kramp KH, et al. Validity and reliability of global operative assessment of laparoscopic skills (GOALS) in novice trainees performing a laparoscopic cholecystectomy. J Surg Educ. 2015;72(2):351–8.

    Article  PubMed  Google Scholar 

  39. Gumbs AA, Hogle NJ, Fowler DL. Evaluation of resident laparoscopic performance using global operative assessment of laparoscopic skills. J Am Coll Surg. 2007;204(2):308–13.

    Article  PubMed  Google Scholar 

  40. Hogle NJ, et al. Evaluation of surgical fellows’ laparoscopic performance using Global Operative Assessment of Laparoscopic Skills (GOALS). Surg Endosc. 2014;28(4):1284–90.

    Article  PubMed  Google Scholar 

  41. Vassiliou MC, et al. Evaluating intraoperative laparoscopic skill: direct observation versus blinded videotaped performances. Surg Innov. 2007;14(3):211–6.

    Article  PubMed  Google Scholar 

  42. Chang L, et al. Reliable assessment of laparoscopic performance in the operating room using videotape analysis. Surg Innov. 2007;14(2):122–6.

    Article  PubMed  Google Scholar 

  43. Watanabe Y, et al. Psychometric properties of the Global Operative Assessment of Laparoscopic Skills (GOALS) using item response theory. Am J Surg. 2016;213(2):273–6.

    Article  PubMed  Google Scholar 

  44. Goh AC, et al. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    Article  PubMed  Google Scholar 

  45. Hung AJ, et al. Comparative assessment of three standardized robotic surgery training methods. BJU Int. 2013;112(6):864–71.

    Article  PubMed  Google Scholar 

  46. Aghazadeh MA, et al. External validation of Global Evaluative Assessment of Robotic Skills (GEARS). Surg Endosc. 2015;29(11):3261–6.

    Article  PubMed  Google Scholar 

  47. Sánchez R, et al. Robotic surgery training: construct validity of Global Evaluative Assessment of Robotic Skills (GEARS). J Robot Surg. 2016;10(3):227–31.

    Article  PubMed  Google Scholar 

  48. Nabhani J, et al. MP11-11 analysis of Global Evaluative Assessment Of Robotic Surgery (GEARS) as an immediate assessment tool in robotic surgery curriculum. J Urol. 2016;195(4):e115–6.

    Article  Google Scholar 

  49. Ghani KR, et al. Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol. 2016;69(4):547–50.

    Article  PubMed  Google Scholar 

  50. Kowalewski TM, et al. Crowd-sourced assessment of technical skills for validation of basic laparoscopic urologic skills tasks. J Urol. 2016;195(6):1859–65.

    Article  PubMed  Google Scholar 

  51. Chen C, et al. Crowd-sourced assessment of technical skills: a novel method to evaluate surgical performance. J Surg Res. 2014;187(1):65–71.

    Article  PubMed  Google Scholar 

  52. Lendvay TS, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.

    Article  PubMed  PubMed Central  Google Scholar 

  53. van Empel PJ, et al. Objective versus subjective assessment of laparoscopic skill. ISRN Minim Invasive Surg. 2013;1–6

    Google Scholar 

  54. Anderson DD, et al. Objective Structured Assessments of Technical Skills (OSATS) does not assess the quality of the surgical result effectively. Clin Orthop Relat Res. 2016;474(4):874–81.

    Article  PubMed  Google Scholar 

  55. Yule S, et al. Surgeons’ non-technical skills in the operating room: reliability testing of the NOTSS behavior rating system. World J Surg. 2008;32(4):548–56.

    Article  PubMed  Google Scholar 

  56. Pugh CM, et al. Intra-operative decision making: more than meets the eye. J Biomed Inform. 2011;44(3):486–96.

    Article  PubMed  Google Scholar 

  57. Skinner A. Retention and retraining of integrated cognitive and psychomotor skills. Proceedings of the Interservice/Industry Training Systems & Education Conference, 2014, Orlando; 2014.

    Google Scholar 

  58. Skinner A, Lathan C, Meadors M, Sevrechts M. Training and retention of medical skills. Proceedings of the Interservice/Industry Training Systems & Education Conference, 2012, Orlando; 2012.

    Google Scholar 

  59. Pugh C, et al. Outcome measures for surgical simulators: is the focus on technical skills the best approach? Surgery. 2010;147(5):646–54.

    Article  PubMed  Google Scholar 

  60. Parker SH, et al. The Surgeons’ Leadership Inventory (SLI): a taxonomy and rating system for surgeons’ intraoperative leadership skills. Am J Surg. 2013;205(6):745–51.

    Article  Google Scholar 

  61. Mishra A, Catchpole K, McCulloch P. The Oxford NOTECHS System: reliability and validity of a tool for measuring teamwork behaviour in the operating theatre. Qual Saf Health Care. 2009;18(2):104–8.

    Article  CAS  PubMed  Google Scholar 

  62. Hull L, et al. Observational teamwork assessment for surgery: content validation and tool refinement. J Am Coll Surg. 2011;212(2):234–43.e5.

    Google Scholar 

  63. Nathwani JN, et al. Relationship between technical errors and decision-making skills in the junior resident. J Surg Educ. 2016;73(6):e84–90.

    Article  PubMed  PubMed Central  Google Scholar 

  64. DaRosa D, et al. Impact of a structured skills laboratory curriculum on surgery residents’ intraoperative decision-making and technical skills. Acad Med. 2008;83(10):S68–71.

    Article  PubMed  Google Scholar 

  65. D’Angelo A-LD, et al. Use of decision-based simulations to assess resident readiness for operative independence. Am J Surg. 2015;209(1):132–9.

    Article  PubMed  Google Scholar 

  66. Dedy NJ, et al. Teaching nontechnical skills in surgical residency: a systematic review of current approaches and outcomes. Surgery. 2013;154(5):1000–8.

    Article  PubMed  Google Scholar 

  67. Birkmeyer JD, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    Article  CAS  PubMed  Google Scholar 

  68. Hull L, et al. The impact of nontechnical skills on technical performance in surgery: a systematic review. J Am Coll Surg. 2012;214(2):214–30.

    Article  PubMed  Google Scholar 

  69. Miller A, Archer J. Impact of workplace based assessment on doctors’ education and performance: a systematic review. BMJ. 2010;341:c5064.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Norcini J, et al. Criteria for good assessment: consensus statement and recommendations from the Ottawa 2010 Conference. Med Teach. 2011;33(3):206–14.

    Article  PubMed  Google Scholar 

  71. Norcini J, Burch V. Workplace-based assessment as an educational tool: AMEE Guide No. 31. Med Teach. 2007;29(9–10):855–71.

    Article  PubMed  Google Scholar 

  72. Shaffer DW, Collier W, Ruis A. A tutorial on epistemic network analysis: analyzing the structure of connections in cognitive, social, and interaction data. J Learn Analytics. 2016;3(3):9–45.

    Article  Google Scholar 

  73. D’Angelo A. Evaluating operative performance through the lens of epistemic frame theory. University of Wisconsin–Madison; 2015.

    Google Scholar 

  74. Ruis A, et al. Modeling operating thinking in a simulation- based continuing medical education course on laparoscopic hernia repair. Presented at the American College of Surgeons, 2017.

    Google Scholar 

  75. Ruis A, et al. The hands and heads of a surgeon: modeling operative competency with multimodal epistemic network analysis. Presented at the American College of Surgeons, 2017.

    Google Scholar 

  76. Schmitz CC, et al. Development and verification of a taxonomy of assessment metrics for surgical technical skills. Acad Med. 2014;89(1):153–61.

    Article  PubMed  Google Scholar 

  77. Kowalewski TM. Real-time quantitative assessment of surgical skill. Thesis from university of washington 2012.

    Google Scholar 

  78. Donaldson MS, Corrigan JM, Kohn LT. To err is human: building a safer health system. National Academies Press; 2000.

    Google Scholar 

  79. Dimick, Justin (jdimick1). “Learning- euphemism for potentially avoidable harm.” 2016. Tweet.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Brand MD, FACS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

George, E.I., Skinner, A., Pugh, C.M., Brand, T.C. (2018). Performance Assessment in Minimally Invasive Surgery. In: Köhler, T., Schwartz, B. (eds) Surgeons as Educators . Springer, Cham. https://doi.org/10.1007/978-3-319-64728-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64728-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64727-2

  • Online ISBN: 978-3-319-64728-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics