Skip to main content

Graphene Analogous Elemental van der Waals Structures

  • Chapter
  • First Online:
Advances in Nanomaterials

Abstract

In recent years, graphene has become a pioneer for investigations involving single atomic layer structures. The idea of 2D materials is not new, since they have been theoretically analyzed for many years. Unfortunately, much of the information was limited to theoretical analysis simply because the creation of these structures had not been possible. The successful synthesis of single-layer graphite allowed the world of 2D materials to become a tangible reality and has paved the way for investigations of varying phenomena occurring in single-atomic layer materials. For many years, graphene was the focus of these investigations since a method of synthesizing other 2D materials was not yet available. In recent years, this has changed as graphene analogous materials have successfully been synthesized, as will be discussed later. The scope of this review focuses on the Group IV elements (C, Si, Ge, and Sn), with emphasis on the non-carbon members of this group.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-3-319-64717-3_7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Balendhran S et al (2015) Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 11(6):640–652

    Article  Google Scholar 

  2. Matthes L, Pulci O, Bechstedt F (2013) Massive Dirac quasiparticles in the optical absorbance of graphene, silicene, germanene, and tinene. J Phys Condens Matter 25(39)

    Google Scholar 

  3. Vogt P et al (2012) Silicene: compelling experimental evidence for graphene like two-dimensional silicon. Phys Rev Lett 108(15)

    Google Scholar 

  4. Meng L et al (2013) Buckled silicene formation on Ir(111). Nano Lett 13(2):685–690

    Article  Google Scholar 

  5. Lalmi B et al (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97(22)

    Google Scholar 

  6. Lin CL et al (2012) Structure of silicene grown on Ag(111). Appl Phys Express 5(4)

    Google Scholar 

  7. Davila ME et al (2014) Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J Phys 16

    Google Scholar 

  8. Jose D, Datta A (2014) Structures and chemical properties of silicene: unlike graphene. Acc Chem Res 47(2):593–602

    Article  Google Scholar 

  9. Kara A et al (2012) A review on silicene-new candidate for electronics (vol 67, pg 1, 2012). Surf Sci Rep 67(5):141–141

    Article  Google Scholar 

  10. Saito R, Dresselhaus G, Dresselhaus MS (1998) Physical properties of carbon nanotubes, vol 35. World Scientific

    Google Scholar 

  11. Guzman-Verri GG and Voon LCLY (2007) Electronic structure of silicon-based nanostructures. Phys Rev B 76(7)

    Google Scholar 

  12. Yang X, Ni J (2005) Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Phys Rev B

    Google Scholar 

  13. Cahangirov S et al (2009) Two-and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102(23)

    Google Scholar 

  14. van den Broek B et al (2014) Two-dimensional hexagonal tin: ab initio geometry, stability, electronic structure and functionalization. 2D Materials 1(2)

    Google Scholar 

  15. Tang PZ et al (2014) Stable two-dimensional dumbbell stanene: a quantum spin hall insulator. Phys Rev B 90(12)

    Google Scholar 

  16. Pei QX et al (2013) Tuning the thermal conductivity of silicene with tensile strain and isotopic doping: a molecular dynamics study. J Appl Phys 114(3)

    Google Scholar 

  17. Li HP, Zhang RQ (2012) Vacancy-defect-induced diminution of thermal conductivity in silicene. Epl 99(3)

    Google Scholar 

  18. Hu W et al (2014) Silicene as a highly sensitive molecule sensor for NH3, NO and NO2. Phys Chem Chem Phys 16(15):6957–6962

    Article  Google Scholar 

  19. Li LF et al (2014) Buckled germanene formation on Pt(111). Adv Mater 26(28):4820–4824

    Article  Google Scholar 

  20. Bampoulis P et al (2014) Germanene termination of Ge2Pt crystals on Ge(110). J Phys Condens Matter 26(44)

    Google Scholar 

  21. Derivaz M et al (2015) Continuous germanene layer on Al(111). Nano Lett 15(4):2510–2516

    Article  Google Scholar 

  22. Oughaddou H et al (2000) Ge/Ag(111) semiconductor-on-metal growth: formation of an Ag2Ge surface alloy. Phys Rev B 62(24):16653–16656

    Article  Google Scholar 

  23. Svec M et al (2014) Silicene versus two-dimensional ordered silicide: atomic and electronic structure of Si-(root 19x root 19)R23.4 degrees/Pt(111). Phys Rev B 89(20)

    Google Scholar 

  24. Miro P, Audiffred M, Heine T (2014) An atlas of two-dimensional materials. Chem Soc Rev 43(18):6537–6554

    Article  Google Scholar 

  25. Acun A et al (2015) Germanene: the germanium analogue of graphene. J Phys Condens Matter 27(44)

    Google Scholar 

  26. Matusalem F et al (2015) Stability and electronic structure of two-dimensional allotropes of group-IV materials. Phys Rev B 92(4)

    Google Scholar 

  27. Roome NJ, Carey JD (2014) Beyond graphene: stable elemental monolayers of silicene and germanene. ACS Appl Mater Interfaces 6(10):7743–7750

    Article  Google Scholar 

  28. Le Lay G et al (2015) Increasing the lego of 2D electronics materials: silicene and germanene, graphene’s new synthetic cousins. Micro- and Nanotechnology Sensors, Systems, and Applications VII 9467

    Google Scholar 

  29. Houssa M et al (2010) Electronic properties of two-dimensional hexagonal germanium. Appl Phys Lett 96(8)

    Google Scholar 

  30. Lebegue S, Eriksson O (2009) Electronic structure of two-dimensional crystals from ab initio theory. Phys Rev B 79(11)

    Google Scholar 

  31. Yang K et al (2014) Thermoelectric properties of atomically thin silicene and germanene nanostructures. Phys Rev B 89(12)

    Google Scholar 

  32. Zhu FF et al (2015) Epitaxial growth of two-dimensional stanene. Nat Mater 14(10):1020–1025

    Article  Google Scholar 

  33. Xu Y et al (2013) Large-gap quantum spin hall insulators in tin films. Phys Rev Lett 111(13)

    Google Scholar 

  34. Saxena S, Choudhary RP, Shukla S (2016) Stanene: atomically thick free-standing layer of 2D hexagonal tin. Sci Rep 6

    Google Scholar 

  35. Modarresi M et al (2015) Effect of external strain on electronic structure of stanene. Comput Mater Sci 101:164–167

    Article  Google Scholar 

  36. Nissimagoudar AS, Sankeshwar NS (2014) Significant reduction of lattice thermal conductivity due to phonon confinement in graphene nanoribbons. Phys Rev B 89(23)

    Google Scholar 

  37. Peng B et al (2016) Low lattice thermal conductivity of stanene. Sci Rep 6:20225

    Article  Google Scholar 

  38. Garg P, Choudhuri I, Pathak B (2017) Band gap opening in stanene induced by patterned BN doping. Phys Chem Chem Phys 19:3660–3669

    Article  Google Scholar 

  39. Mojumder S, Al Amin A, Islam MM (2015) Mechanical properties of stanene under uniaxial and biaxial loading: a molecular dynamics study. J Appl Phys 118(12)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oswaldo Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Sanchez, O., Kim, J.M., Balasubramanian, G. (2018). Graphene Analogous Elemental van der Waals Structures. In: Balasubramanian, G. (eds) Advances in Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-64717-3_4

Download citation

Publish with us

Policies and ethics