Skip to main content

Carbon Nanotubes: Synthesis, Characterization, and Applications

  • Chapter
  • First Online:
Advances in Nanomaterials

Abstract

Carbon nanotubes (CNTs) are one of the many nanocarbon forms and exhibit a unique and extraordinary combination of physical and mechanical properties. They have been researched during the last two decades and have displayed unprecedented performance in a variety of applications. This chapter discusses the synthesis, characterization, processing, and applications of CNTs. It is written in language that is relatively easy to understand and is intended for readers who are new to the field and want to gain a broad understanding of this material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Olson JR, Pohl RO, Vandersande JW, Zoltan A, Anthony TR, Banholzer WF (1993) Thermal-conductivity of diamond between 170 and 1200-K and the isotope effect. Phys Rev B 47:14850–14856

    Article  Google Scholar 

  2. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  3. Zhang RF, Zhang YY, Zhang Q, Xie HH, Qian WZ, Wei F (2013) Growth of half-meter long carbon nanotubes based on Schulz-Flory distribution. ACS Nano 7:6156–6161

    Article  Google Scholar 

  4. Naz A, Kausar A, Siddiq M, Choudhary MA (2016) Comparative review on structure, properties, fabrication techniques, and relevance of polymer nanocomposites reinforced with carbon nanotube and graphite fillers. Polym-Plast Technol Eng 55:171–198

    Article  Google Scholar 

  5. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  6. De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  Google Scholar 

  7. Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  Google Scholar 

  8. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–28

    Article  Google Scholar 

  9. Grado-Caffaro MA, Grado-Caffaro M (2008) On ballistic transport in carbon nanotubes. Optik 119:601–602

    Article  Google Scholar 

  10. Li HJ, Lu WG, Li JJ, Bai XD, Gu CZ (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95:086601

    Article  Google Scholar 

  11. Javey A, Guo J, Wang Q, Lundstrom M, Dai HJ (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  12. Min CY, Shen XQ, Shi Z, Chen L, Xu ZW (2010) The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: A review. Polym-Plast Technol Eng 49:1172–1181

    Article  Google Scholar 

  13. Han ZD, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog Polym Sci 36:914–944

    Article  Google Scholar 

  14. Tang ZK, Zhang LY, Wang N, Zhang XX, Wen GH, Li GD, Wang JN, Chan CT, Sheng P (2001) Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292:2462–2465

    Article  Google Scholar 

  15. Prasher RS, Hu XJ, Chalopin Y, Mingo N, Lofgreen K, Volz S, Cleri F, Keblinski P (2009) Turning carbon nanotubes from exceptional heat conductors into insulators. Phys Rev Lett 102:105901

    Article  Google Scholar 

  16. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  17. Shokrieh MM, Rafiee R (2010) A review of the mechanical properties of isolated carbon nanotubes and carbon nanotube composites. Mech Compos Mater 46:155–172

    Article  Google Scholar 

  18. Filleter T, Yockel S, Naraghi M, Paci JT, Compton OC, Mayes ML, Nguyen ST, Schatz GC, Espinosa HD (2012) Experimental–computational study of shear interactions within double-walled carbon nanotube bundles. Nano Lett 12:732–742

    Article  Google Scholar 

  19. Paci JT, Furmanchuk A, Espinosa HD, Schatz GC (2014) Shear and friction between carbon nanotubes in bundles and yarns. Nano Lett 14:6138–6147

    Article  Google Scholar 

  20. Ericson LM, Fan H, Peng HQ, Davis VA, Zhou W, Sulpizio J, Wang YH, Booker R, Vavro J, Guthy C, Parra-Vasquez ANG, Kim MJ, Ramesh S, Saini RK, Kittrell C, Lavin G, Schmidt H, Adams WW, Billups WE, Pasquali M, Hwang WF, Hauge RH, Fischer JE, Smalley RE (2004) Macroscopic, neat, single-walled carbon nanotube fibers. Science 305:1447–1450

    Article  Google Scholar 

  21. Lu WB, Zu M, Byun JH, Kim BS, Chou TW (2012) State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater 24:1805–1833

    Article  Google Scholar 

  22. Shin MK, Lee B, Kim SH, Lee JA, Spinks GM, Gambhir S, Wallace GG, Kozlov ME, Baughman RH, Kim SJ (2012) Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat Commun 3:650

    Article  Google Scholar 

  23. Parker DH, Wurz P, Chatterjee K, Lykke KR, Hunt JE, Pellin MJ, Hemminger JC, Gruen DM, Stock LM (1991) High-yield synthesis, separation, and mass-spectrometric characterization of fullerenes C60 to C266. J Am Chem Soc 113:7499–7503

    Article  Google Scholar 

  24. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 72:573–580

    Article  Google Scholar 

  25. Valizadeh M, Kazemzadeh A, Raisian M, Mohammadizadeh A (2007) Development of sol-gel process for synthesis of single-walled carbon nanotubes. Asian J Chem 19:1246–1250

    Google Scholar 

  26. Hu WC, Hou SS, Lin TH (2014) Analysis on controlling factors for the synthesis of carbon nanotubes and nano-onions in counterflow diffusion flames. J Nanosci Nanotechnol 14:5363–5369

    Article  Google Scholar 

  27. Liu YC, Sun BM, Ding ZY (2011) Effect of hydrogen on V-type pyrolysis flame synthesis of carbon nanotubes. Adv Polym Sci Eng 221:545–549

    Google Scholar 

  28. Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis-review. J Mater Chem 21:15872–15884

    Article  Google Scholar 

  29. Diener MD, Nichelson N, Alford JM (2000) Synthesis of single-walled carbon nanotubes in flames. J Phys Chem B 104:9615–9620

    Article  Google Scholar 

  30. Unrau CJ, Katta VR, Axelbaum RL (2010) Characterization of diffusion flames for synthesis of single-walled carbon nanotubes. Combust Flame 157:1643–1648

    Article  Google Scholar 

  31. Yamamoto S, Tani K, Onaka Y, Takata Y, Suzuki S, Shibuta Y, Maruyama S, Kohno M (2007) Synthesis of single walled carbon nanotubes by laser vaporized catalytic chemical vapor deposition technique. ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference 2:387–393

    Google Scholar 

  32. Xue RL, Sun ZP, Su LH, Zhang XG (2010) Large-scale synthesis of nitrogen-doped carbon nanotubes by chemical vapor deposition using a co-based catalyst from layered double hydroxides. Catal Lett 135:312–320

    Article  Google Scholar 

  33. Campos-Delgado J, Maciel IO, Cullen DA, Smith DJ, Jorio A, Pimenta MA, Terrones H, Terrones M (2010) Chemical vapor deposition synthesis of N-, P-, and Si-doped single-walled carbon nanotubes. ACS Nano 4:1696–1702

    Article  Google Scholar 

  34. Watanabe T, Tsuda S, Yamaguchi T, Takano Y (2010) Microwave plasma chemical vapor deposition synthesis of boron-doped carbon nanotube. Physica C-Superconductivity and Its Applications 470:S608–S609

    Article  Google Scholar 

  35. Zhong G, Iwasaki T, Robertson J, Kawarada H (2007) Growth kinetics of 0.5 cm vertically aligned single-walled carbon nanotubes. J Phys Chem B 111(8):1907–1910

    Article  Google Scholar 

  36. Xiang R, Luo G, Yang Z, Zhang Q, Qian W, Wei F (2007) Temperature effect on the substrate selectivity of carbon nanotube growth in floating chemical vapor deposition. Nanotechnology 18(41):415703

    Article  Google Scholar 

  37. Li Y, Xu G, Zhang H, Li T, Yao Y, Li Q, Dai Z (2015) Alcohol-assisted rapid growth of vertically aligned carbon nanotube arrays. Carbon 91:45–55

    Article  Google Scholar 

  38. Unalan HE, Chhowalla M (2005) Investigation of single-walled carbon nanotube growth parameters using alcohol catalytic chemical vapour deposition. Nanotechnology 16:2153–2163

    Article  Google Scholar 

  39. Eres G, Kinkhabwala AA, Cui H, Geohegan DB, Puretzky AA, Lowndes DH (2005) Molecular beam–controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays. J Phys Chem B 109(35):16684

    Article  Google Scholar 

  40. Xu YQ, Flor E, Kim MJ, Hamadani B, Schmidt H, Smalley RE, Hauge RH (2006) Vertical array growth of small diameter single-walled carbon nanotubes. J Am Chem Soc 128(20):6560–6561

    Article  Google Scholar 

  41. Okazaki T, Shinohara H (2003) Synthesis and characterization of single-wall carbon nanotubes by hot-filament assisted chemical vapor deposition. Chem Phys Lett 376:606–611

    Article  Google Scholar 

  42. Zhang G, Mann D, Zhang L, Javey A, Li Y, Yenilmez E et al (2005) Ultra-high-yield growth of vertical single-walled carbon nanotubes: hidden roles of hydrogen and oxygen. Proc Natl Acad Sci U S A 102(45):16141–16145

    Article  Google Scholar 

  43. Yasuda S, Futaba DN, Yamada T, Satou J, Shibuya A, Takai H et al (2009) Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction. ACS Nano 3(12):4164–4170

    Article  Google Scholar 

  44. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y et al (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9(9):3137–3141

    Article  Google Scholar 

  45. Huang S, Woodson M, Smalley R, Liu J (2004) Growth mechanism of oriented long single walled carbon nanotubes using “fast-heating” chemical vapor deposition process. Nano Lett 4(6):1025–1028

    Article  Google Scholar 

  46. Peng BH, Jiang S, Zhang YY, Zhang J (2011) Enrichment of metallic carbon nanotubes by electric field-assisted chemical vapor deposition. Carbon 49:2555–2560

    Article  Google Scholar 

  47. Ikuno T, Katayama M, Yamauchi N, Wongwiriyapan W, Honda S, Oura K, Hobara R, Hasegawa S (2004) Selective growth of straight carbon nanotubes by low-pressure thermal chemical vapor deposition. Jpn J Appl Phys 43:860–863

    Article  Google Scholar 

  48. Venegoni D, Serp P, Feurer R, Kihn Y, Vahlas C, Kalck P (2002) Parametric study for the growth of carbon nanotubes by catalytic chemical vapor deposition in a fluidized bed reactor. Carbon 40:1799–1807

    Article  Google Scholar 

  49. Qin LC, Zhou D, Krauss AR, Gruen DM (1998) Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Appl Phys Lett 72:3437–3439

    Article  Google Scholar 

  50. Pirard SL, Pirard JP, Bossuot C (2009) Modeling of a continuous rotary reactor for carbon nanotube synthesis by catalytic chemical vapor deposition. AICHE J 55:675–686

    Article  Google Scholar 

  51. Dupuis A (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961

    Article  Google Scholar 

  52. Barzegar HR, Nitze F, Sharifi T, Ramstedt M, Tai CW, Malolepszy A, Stobinski L, Wagberg T (2012) Simple dip-coating process for the synthesis of small diameter single-walled carbon nanotubes—effect of catalyst composition and catalyst particle size on chirality and diameter. J Phys Chem C 116:12232–12239

    Article  Google Scholar 

  53. Zhou K, Huang JQ, Zhang Q, Wei F (2010) Multi-directional growth of aligned carbon nanotubes over catalyst film prepared by atomic layer deposition. Nanoscale Res Lett 5:1555–1560

    Article  Google Scholar 

  54. Wei YY, Eres G, Merkulov VI, Lowndes DH (2001) Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition. Appl Phys Lett 78:1394–1396

    Article  Google Scholar 

  55. Gan B, Ahn J, Zhang Q, Rusli, Yoon SF, Yu J, Huang QF, Chew K, Ligatchev VA, Zhang XB, Li WZ (2001) Y-junction carbon nanotubes grown by in situ evaporated copper catalyst. Chem Phys Lett 333:23–28

    Article  Google Scholar 

  56. Lee SY, Yamada M, Miyake M (2005) Synthesis of carbon nanotubes over gold nanoparticle supported catalysts. Carbon 43:2654–2663

    Article  Google Scholar 

  57. Wong YM, Wei S, Kang WP, Davidson JL, Hofmeister W, Huang JH, Cui Y (2004) Carbon nanotubes field emission devices grown by thermal CVD with palladium as catalysts. Diam Relat Mater 13:2105–2112

    Article  Google Scholar 

  58. Han JH, Choi SH, Lee TY, Yoo JB, Park CY, Jung T, Yu SG, Yi W, Han IT, Kim JM (2003) Growth characteristics of carbon nanotubes using platinum catalyst by plasma enhanced chemical vapor deposition. Diam Relat Mater 12:878–883

    Article  Google Scholar 

  59. Blanco M, Alvarez P, Blanco C, Jimenez MV, Perez-Torrente JJ, Oro LA, Blasco J, Cuarterod V, Menendez R (2016) Enhancing the hydrogen transfer catalytic activity of hybrid carbon nanotube–based NHC–iridium catalysts by increasing the oxidation degree of the nanosupport. Cat Sci Technol 6:5504–5514

    Article  Google Scholar 

  60. Fazil A, Chetty R (2014) Synthesis and evaluation of carbon nanotubes supported silver catalyst for alkaline fuel cell. Electroanalysis 26:2380–2387

    Article  Google Scholar 

  61. Lee CJ, Lyu SC, Kim HW, Park JW, Jung HM, Park J (2002) Carbon nanotubes produced by tungsten-based catalyst using vapor phase deposition method. Chem Phys Lett 361:469–472

    Article  Google Scholar 

  62. Zhou D, Wang S, Seraphin S (1994) Single-Walled Carbon Nanotubes Grown from Yttrium Carbide Particles. Fifty-Second Annual Meeting—Microscopy Society of America/Twenty-Ninth Annual Meeting—Microbeam Analysis Society, Proceedings, 772–773

    Google Scholar 

  63. Flahaut E, Peigney A, Bacsa WS, Bacsa RR, Laurent C (2004) CCVD synthesis of carbon nanotubes from (Mg, Co, Mo)O catalysts: influence of the proportions of cobalt and molybdenum. J Mater Chem 14:646–653

    Article  Google Scholar 

  64. Botti S, Ciardi R, Terranova ML, Piccirillo S, Sessa V, Rossi M, Vittori-Antisari M (2002) Self-assembled carbon nanotubes grown without catalyst from nanosized carbon particles adsorbed on silicon. Appl Phys Lett 80:1441–1443

    Article  Google Scholar 

  65. Azam MA, Isomura K, Ismail S, Mohamad N, Shimoda T (2015) Electrically conductive aluminum oxide thin film used as cobalt catalyst-support layer in vertically aligned carbon nanotube growth. Adv Nat Sci: Nanosci Nanotechnol 6

    Google Scholar 

  66. Chai SP, Zein SHS, Mohamed AR (2007) Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane. Diam Relat Mater 16:1656–1664

    Article  Google Scholar 

  67. Cho W, Schulz M, Shanov V (2014) Growth and characterization of vertically aligned centimeter long CNT arrays. Carbon 72:264–273

    Article  Google Scholar 

  68. Hata K, Futaba DN, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362–1364

    Article  Google Scholar 

  69. Tessonnier JP, Su DS (2011) Recent progress on the growth mechanism of carbon nanotubes: a review. ChemSusChem 4:824–847

    Article  Google Scholar 

  70. Kamachali RD (2006) Theoretical calculations on the catalytic growth of multiwall carbon nanotube in chemical vapor deposition. Chem Phys 327(2):434–438

    Article  Google Scholar 

  71. Puretzky AA, Geohegan DB, Jesse S, Ivanov IN, Eres G (2005) In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. Appl Phys A 81(2):223–240

    Google Scholar 

  72. Patole SP, Kim H, Choi J, Kim Y, Baik S, Yoo JB (2010) Kinetics of catalyst size dependent carbon nanotube growth by growth interruption studies. Appl Phys Lett 96(9):094101

    Article  Google Scholar 

  73. Hasegawa K, Noda S (2011) Millimeter-tall single-walled carbon nanotubes rapidly grown with and without water. ACS Nano 5(2):975–984

    Article  Google Scholar 

  74. Meshot ER, Hart AJ (2008) Abrupt self-termination of vertically aligned carbon nanotube growth. Appl Phys Lett 92(11):113107

    Article  Google Scholar 

  75. Pal SK, Talapatra S, Kar S, Ci L, Vajtai R, Borca-Tasciuc T et al (2008) Time and temperature dependence of multi-walled carbon nanotube growth on Inconel 600. Nanotechnology 19(4):045610

    Article  Google Scholar 

  76. Stadermann M, Sherlock SP, In JB, Fornasiero F, Park HG, Artyukhin AB, Wang YM, De Yoreo JJ, Grigoropoulos CP, Bakajin O, Chernov AA, Noy A (2009) Mechanism and kinetics of growth termination in controlled chemical vapor deposition growth of multiwall carbon nanotube arrays. Nano Lett 9:738–744

    Article  Google Scholar 

  77. Christen HM, Puretzky AA, Cui H, Belay K, Fleming PH, Geohegan DB, Lowndes DH (2004) Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Lett 4(10):1939–1942

    Article  Google Scholar 

  78. Liu K, Jiang K, Wei Y, Ge S, Liu P, Fan S (2007) Controlled termination of the growth of vertically aligned carbon nanotube arrays. Adv Mater 19(7):975–978

    Article  Google Scholar 

  79. Louchev OA, Laude T, Sato Y, Kanda H (2003) Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. J Chem Phys 118(16):7622–7634

    Article  Google Scholar 

  80. Mora E, Harutyunyan AR (2008) Study of single-walled carbon nanotubes growth via the catalyst lifetime. J Phys Chem C 112(13):4805–4812

    Article  Google Scholar 

  81. Xiang R, Yang Z, Zhang Q, Luo G, Qian W, Wei F et al (2008) Growth deceleration of vertically aligned carbon nanotube arrays: catalyst deactivation or feedstock diffusion controlled? J Phys Chem C 112(13):4892–4896

    Article  Google Scholar 

  82. Zhu L, Xu J, Xiao F, Jiang H, Hess DW, Wong CP (2007) The growth of carbon nanotube stacks in the kinetics-controlled regime. Carbon 45:344–348

    Article  Google Scholar 

  83. Hofmann S, Csanyi G, Ferrari AC, Payne MC, Robertson J (2005) Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 95(3):036101

    Article  Google Scholar 

  84. Pelech I, Narkiewicz U (2009) The kinetics of ethylene decomposition on iron catalyst. Acta Phys Pol A 116:S146–S149

    Article  Google Scholar 

  85. Yamada T, Maigne A, Yudasaka M, Mizuno K, Futaba DN, Yumura M, Iijima S, Hata K (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts. Nano Lett 8:4288–4292

    Article  Google Scholar 

  86. Borjesson A, Bolton K (2011) Modeling of Ostwald ripening of metal clusters attached to carbon nanotubes. J Phys Chem C 115:24454–24462

    Article  Google Scholar 

  87. Amama PB, Pint CL, Kim SM, Mcjilton L, Eyink KG, Stach EA, Hauge RH, Maruyama B (2010) Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single-walled carbon nanotube carpet growth. ACS Nano 4:895–904

    Article  Google Scholar 

  88. Louchev OA, Sato Y, Kanda H (2002) Growth mechanism of carbon nanotube forests by chemical vapor deposition. Appl Phys Lett 80:2752

    Article  Google Scholar 

  89. Han JH, Graff RA, Welch B, Marsh CP, Franks R, Strano MS (2008) A mechanochemical model of growth termination in vertical carbon nanotube forests. ACS Nano 2:53–60

    Article  Google Scholar 

  90. Blanch AJ, Lenehan CE, Quinton JS (2011) Parametric analysis of sonication and centrifugation variables for dispersion of single walled carbon nanotubes in aqueous solutions of sodium dodecylbenzene sulfonate. Carbon 49:5213–5228

    Article  Google Scholar 

  91. Huang LP, Zhang HL, Wu B, Liu YQ, Wei DC, Chen JY, Xue YZ, Yu G, Kajiura H, Li YM (2010) A generalized method for evaluating the metallic-to-semiconducting ratio of separated single-walled carbon nanotubes by UV-vis-NIR characterization. J Phys Chem C 114:12095–12098

    Article  Google Scholar 

  92. Subbaiyan NK, Parra-Vasquez ANG, Cambre S, Cordoba MAS, Yalcin SE, Hamilton CE, Mack NH, Blackburn JL, Doorn SK, Duque JG (2015) Bench-top aqueous two-phase extraction of isolated individual single-walled carbon nanotubes. Nano Res 8:1755–1769

    Article  Google Scholar 

  93. Espinosa HD, Filleter T, Naraghi M (2012) Multiscale experimental mechanics of hierarchical carbon-based materials. Adv Mater 24:2805–2823

    Article  Google Scholar 

  94. Filleter T, Espinosa HD (2013) Multi-scale mechanical improvement produced in carbon nanotube fibers by irradiation cross-linking. Carbon 56:1–11

    Article  Google Scholar 

  95. Zhao J, Shi DL, Lian J (2009) Small angle light scattering study of improved dispersion of carbon nanofibers in water by plasma treatment. Carbon 47:2329–2336

    Article  Google Scholar 

  96. Chatterjee T, Jackson A, Krishnamoorti R (2008) Hierarchical structure of carbon nanotube networks. J Am Chem Soc 130:6934–6935

    Article  Google Scholar 

  97. Mahdavi M, Baniassadi M, Baghani M, Dadmun M, Tehrani M (2015) 3D reconstruction of carbon nanotube networks from neutron scattering experiments. Nanotechnology 26:385704

    Article  Google Scholar 

  98. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40:8501–8517

    Article  Google Scholar 

  99. Jiang CM, Saha A, Young CC, Hashim DP, Ramirez CE, Ajayan PM, Pasquali M, Marti AA (2014) Macroscopic nanotube fibers spun from single-walled carbon nanotube polyelectrolytes. ACS Nano 8:9107–9112

    Article  Google Scholar 

  100. Launois P, Marucci A, Vigolo B, Bernier P, Derre A, Poulin P (2001) Structural characterization of nanotube fibers by X-ray scattering. J Nanosci Nanotechnol 1:125–128

    Article  Google Scholar 

  101. Kang MS, Shinb MK, Ismail YA, Shin SR, Kim SI, Kim H, Lee H, Kim SJ (2009) The fabrication of polyaniline/single-walled carbon nanotube fibers containing a highly-oriented filler. Nanotechnology 20:085701

    Article  Google Scholar 

  102. Kozlov ME, Capps RC, Sampson WM, Ebron VH, Ferraris JP, Baughman RH (2005) Spinning solid and hollow polymer-free carbon nanotube fibers. Adv Mater 17:614–617

    Article  Google Scholar 

  103. Zhou W, Vavro J, Guthy C, Winey KI, Fischer JE, Ericson LM, Ramesh S, Saini R, Davis VA, Kittrell C, Pasquali M, Hauge RH, Smalley RE (2004) Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J Appl Phys 95:649–655

    Article  Google Scholar 

  104. Huang W, Wang Y, Luo GH, Wei F (2003) 99.9% purity multi-walled carbon nanotubes by vacuum high-temperature annealing. Carbon 41:2585–2590

    Article  Google Scholar 

  105. Luhrs CC, Garcia D, Tehrani M, Al-Haik M, Taha MR, Phillips J (2009) Generation of carbon nanofilaments on carbon fibers at 550 °C. Carbon 47:3071–3078

    Article  Google Scholar 

  106. Tehrani M, Boroujeni AY, Luhrs C, Phillips J, Al-Haik MS (2014) Hybrid composites based on carbon fiber/carbon nanofilament reinforcement. Materials 7:4182–4195

    Article  Google Scholar 

  107. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interf Sci 128–130:37–46

    Article  Google Scholar 

  108. Dehghan M, Al-Mahaidi R, Sbarski I, Mohammadzadeh E (2015) Surfactant-assisted dispersion of MWCNTs in epoxy resin used in CFRP strengthening systems. J Adhes 91:461–480

    Article  Google Scholar 

  109. Xin F, Li L (2013) Effect of Triton X-100 on MWCNT/PP composites. J Thermoplast Compos Mater 26:227–242

    Article  Google Scholar 

  110. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  111. Breuer O, Sundararaj U (2004) Big returns from small fibers: a review on polymer/carbon nanotube composites. Polym Compos 25:630–645

    Article  Google Scholar 

  112. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer–matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575

    Article  Google Scholar 

  113. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39:5194–5205

    Article  Google Scholar 

  114. Manufacturing The Carbon Nanotube Market By John Evans, http://www.rsc.org/chemistryworld/Issues/2007/November/ManufacturingCarbonNanotubeMarket.asp Accessed May 2016. [Online]. [Accessed]. 2011. QSonica Sonicator Brochure. Cole Palmer

  115. Montazeri A, Montazeri N, Pourshamsian K, Teharkhtchi A (2011) The effect of sonication time and dispersing medium on the mechanical properties of multiwalled carbon nanotube (MWCNT)/epoxy composite. Int J Polym Anal Charact 16:465–476

    Article  Google Scholar 

  116. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  Google Scholar 

  117. Han JH, Zhang H, Chen MJ, Wang GR, Zhang Z (2014) CNT buckypaper/thermoplastic polyurethane composites with enhanced stiffness, strength and toughness. Compos Sci Technol 103:63–71

    Article  Google Scholar 

  118. OH JY, Yang SJ, Park JY, Kim T, Lee K, Kim YS, Han HN, Park CR (2015) Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Nano Lett 15:190–197

    Article  Google Scholar 

  119. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33

    Article  Google Scholar 

  120. Xie XL, Mai YW, Zhou XP (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R-Rep 49:89–112

    Article  Google Scholar 

  121. Yu J, Grossiord N, Koning CE, Loos J (2007) Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution. Carbon 45:618–623

    Article  Google Scholar 

  122. Tehrani M, Boroujeni AY, Hartman TB, Haugh TP, Case SW, Al-Haik MS (2013) Mechanical characterization and impact damage assessment of a woven carbon fiber reinforced carbon nanotube–epoxy composite. Compos Sci Technol 75:42–48

    Article  Google Scholar 

  123. Tehrani M, Safdari M, Al-Haik MS (2011) Nanocharacterization of creep behavior of multiwall carbon nanotubes/epoxy nanocomposite. Int J Plast 27:887–901

    Article  Google Scholar 

  124. Tehrani M, Safdari M, Boroujeni AY, Razavi Z, Case SW, Dahmen K, Garmestani H, Al-Haik MS (2013) Hybrid carbon fiber/carbon nanotube composites for structural damping applications. Nanotechnology 24, 155704

    Google Scholar 

  125. Zhang XF, Li QW, Holesinger TG, Arendt PN, Huang JY, Kirven PD, Clapp TG, Depaula RF, Liao XZ, Zhao YH, Zheng LX, Peterson DE, Zhu YT (2007) Ultrastrong, stiff, and lightweight carbon-nanotube fibers. Adv Mater 19:4198–4201

    Article  Google Scholar 

  126. Behabtu N, Young CC, Tsentalovich DE, Kleinerman O, Wang X, Ma AW, Bengio EA, Ter Waarbeek RF, De Jong JJ, Hoogerwerf RE, Fairchild SB, Ferguson JB, Maruyama B, Kono J, Talmon Y, Cohen Y, Otto MJ, Pasquali M (2013) Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339:182–186

    Article  Google Scholar 

  127. Zhao Y, Wei J, Vajtai R, Ajayan PM, Barrera EV (2011) Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals. Sci Rep 1:83

    Article  Google Scholar 

  128. Di J, Wang X, Xing Y, Zhang Y, Zhang X, Lu W, Li Q, Zhu YT (2014) Dry-processable carbon nanotubes for functional devices and composites. Small 10:4606–4625

    Article  Google Scholar 

  129. Lekawa-Raus A, Patmore J, Kurzepa L, Bulmer J, Koziol K (2014) Electrical properties of carbon nanotube based fibers and their future use in electrical wiring. Adv Funct Mater 24:3661–3682

    Article  Google Scholar 

  130. Lee J, Stein IY, Devoe ME, Lewis DJ, Lachman N, Kessler SS, Buschhorn ST, Wardle BL (2015) Impact of carbon nanotube length on electron transport in aligned carbon nanotube networks. Appl Phys Lett 106:053110

    Article  Google Scholar 

  131. Che YC, Wang C, Liu J, Liu BL, Lin X, Parker J, Beasley C, Wong HSP, Zhou CW (2012) Selective synthesis and device applications of semiconducting single-walled carbon nanotubes using isopropyl alcohol as feedstock. ACS Nano 6:7454–7462

    Article  Google Scholar 

  132. Kim W, Choi HC, Shim M, Li YM, Wang DW, Dai HJ (2002) Synthesis of ultralong and high percentage of semiconducting single-walled carbon nanotubes. Nano Lett 2:703–708

    Article  Google Scholar 

  133. Li JH, Ke CT, Liu KH, Li P, Liang SH, Finkelstein G, Wang F, Liu J (2014) Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes. ACS Nano 8:8564–8572

    Article  Google Scholar 

  134. Li WS, Hou PX, Liu C, Sun DM, Yuan JT, Zhao SY, Yin LC, Cong HT, Cheng HM (2013) High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors. ACS Nano 7:6831–6839

    Article  Google Scholar 

  135. Liu BL, Liu J, Li HB, Bhola R, Jackson EA, Scott LT, Page A, Irle S, Morokuma K, Zhou CW (2015) Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett 15:586–595

    Article  Google Scholar 

  136. Qian Y, Huang B, Gao FL, Wang CY, Ren GY (2010) Preferential growth of semiconducting single-walled carbon nanotubes on substrate by europium oxide. Nanoscale Res Lett 5:1578–1584

    Article  Google Scholar 

  137. Qin XJ, Peng F, Yang F, He XH, Huang HX, Luo D, Yang J, Wang S, Liu HC, Peng LM, Li Y (2014) Growth of semiconducting single-walled carbon nanotubes by using ceria as catalyst supports. Nano Lett 14:512–517

    Article  Google Scholar 

  138. Qu LT, Du F, Dai LM (2008) Preferential syntheses of semiconducting vertically aligned single-walled carbon nanotubes for direct use in FETs. Nano Lett 8:2682–2687

    Article  Google Scholar 

  139. Loebick CZ, Podila R, Reppert J, Chudow J, Ren F, Haller GL, Rao AM, Pfefferle LD (2010) Selective synthesis of subnanometer diameter semiconducting single-walled carbon nanotubes. J Am Chem Soc 132:11125–11131

    Article  Google Scholar 

  140. Song W, Jeon C, Kim YS, Kwon YT, Jung DS, Jang SW, Choi WC, Park JS, Saito R, Park CY (2010) Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. ACS Nano 4:1012–1018

    Article  Google Scholar 

  141. Komatsu N, Wang F (2010) A comprehensive review on seperation methods and techniques for single-walled carbon nanotubes. Materials 3:3818–3844

    Article  Google Scholar 

  142. Subbaiyan NK, Cambre S, Parra-Vasquez ANG, Haroz EH, Doorn SK, Duque JG (2014) Role of surfactants and salt in aqueous two-phase separation of carbon nanotubes toward simple chirality isolation. ACS Nano 8:1619–1628

    Article  Google Scholar 

  143. Chattopadhyay D, Galeska I, Papadimitrakopoulos F (2002) Complete elimination of metal catalysts from single wall carbon nanotubes. Carbon 40:985–988

    Article  Google Scholar 

  144. Shim HC, Song JW, Kwak YK, Kim S, Han CS (2009) Preferential elimination of metallic single-walled carbon nanotubes using microwave irradiation. Nanotechnology 20:065707

    Article  Google Scholar 

  145. Song JZ, Lu CF, Jin SH, Dunham SN, Xie X, Rogers JA, Huang YG (2015) Purification of single-walled carbon nanotubes based on thermocapillary flow. J Appl Mech 82:071010

    Article  Google Scholar 

  146. Zhang GY, Qi PF, Wang XR, Lu YR, Li XL, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai HJ (2006) Selective etching of metallic carbon nanotubes by gas-phase reaction. Science 314:974–977

    Article  Google Scholar 

  147. Zhou WB, Fan QX, Zhang Q, Li KW, Cai L, Gu XG, Yang F, Zhang N, Xiao ZJ, Chen HL, Xiao SQ, Wang YC, Liu HP, Zhou WY, Xie SS (2016) Ultrahigh-power-factor carbon nanotubes and an ingenious strategy for thermoelectric performance evaluation. Small 12:3407–3414

    Article  Google Scholar 

  148. Lalwani G, Gopalan A, D’agati M, Sankaran JS, Judex S, Qin YX, Sitharaman B (2015) Porous three-dimensional carbon nanotube scaffolds for tissue engineering. J Biomed Mater Res A 103:3212–3225

    Article  Google Scholar 

  149. Stout DA (2015) Recent advancements in carbon nanofiber and carbon nanotube applications in drug delivery and tissue engineering. Curr Pharm Des 21:2037–2044

    Article  Google Scholar 

  150. Stein J, Lenczowski B, Anglaret E, Frety N (2014) Influence of the concentration and nature of carbon nanotubes on the mechanical properties of AA5083 aluminium alloy matrix composites. Carbon 77:44–52

    Article  Google Scholar 

  151. Chou T-W, Gao L, Thostenson ET, Zhang Z, Byun J-H (2010) An assessment of the science and technology of carbon nanotube–based fibers and composites. Compos Sci Technol 70:1–19

    Article  Google Scholar 

  152. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652

    Article  Google Scholar 

  153. Suhr J, Koratkar N, Keblinski P, Ajayan P (2005) Viscoelasticity in carbon nanotube composites. Nat Mater 4:134–137

    Article  Google Scholar 

  154. Lima MD, Fang SL, Lepro X, Lewis C, Ovalle-Robles R, Carretero-Gonzalez J, Castillo-Martinez E, Kozlov ME, Oh JY, Rawat N, Haines CS, Haque MH, Aare V, Stoughton S, Zakhidov AA, Baughman RH (2011) Biscrolling nanotube sheets and functional guests into yarns. Science 331:51–55

    Article  Google Scholar 

  155. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49:533–544

    Article  Google Scholar 

  156. Kashiwagi T, Du FM, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928–933

    Article  Google Scholar 

  157. Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P (2008) Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling 24:291–302

    Article  Google Scholar 

  158. Wu ZC, Chen ZH, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305:1273–1276

    Article  Google Scholar 

  159. Cao Q, Rogers JA (2009) Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects. Adv Mater 21:29–53

    Article  Google Scholar 

  160. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337

    Article  Google Scholar 

  161. Sun DM, Timmermans MY, Tian Y, Nasibulin AG, Kauppinen EI, Kishimoto S, Mizutani T, Ohno Y (2011) Flexible high-performance carbon nanotube integrated circuits. Nat Nanotechnol 6:156–161

    Article  Google Scholar 

  162. Rueckes T, Kim K, Joselevich E, Tseng GY, Cheung CL, Lieber CM (2000) Carbon nanotube–based nonvolatile random access memory for molecular computing. Science 289:94–97

    Article  Google Scholar 

  163. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150

    Article  Google Scholar 

  164. Dai LM, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8:1130–1166

    Article  Google Scholar 

  165. Kohler AR, Som C, Helland A, Gottschalk F (2008) Studying the potential release of carbon nanotubes throughout the application life cycle. J Clean Prod 16:927–937

    Article  Google Scholar 

  166. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH (2001) Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv Funct Mater 11:387–392

    Article  Google Scholar 

  167. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  Google Scholar 

  168. Matsumoto T, Komatsu T, Arai K, Yamazaki T, Kijima M, Shimizu H, Takasawa Y, Nakamura J (2004) Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem Commun 7:840–841

    Article  Google Scholar 

  169. Lee JM, Park JS, Lee SH, Kim H, Yoo S, Kim SO (2011) Selective electron- or hole-transport enhancement in bulk-heterojunction organic solar cells with N- or B-doped carbon nanotubes. Adv Mater 23:629–633

    Article  Google Scholar 

  170. Gabor NM, Zhong ZH, Bosnick K, Park J, Mceuen PL (2009) Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325:1367–1371

    Article  Google Scholar 

  171. Holt JK, Park HG, Wang YM, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–1037

    Article  Google Scholar 

  172. Gao G, Vecitis CD (2011) Electrochemical carbon nanotube filter oxidative performance as a function of surface chemistry. Environ Sci Technol 45:9726–9734

    Article  Google Scholar 

  173. Rahaman MS, Vecitis CD, Elimelech M (2012) Electrochemical carbon-nanotube filter performance toward virus removal and inactivation in the presence of natural organic matter. Environ Sci Technol 46:1556–1564

    Article  Google Scholar 

  174. Corry B (2008) Designing carbon nanotube membranes for efficient water desalination. J Phys Chem B 112:1427–1434

    Article  Google Scholar 

  175. Heller DA, Baik S, Eurell TE, Strano MS (2005) Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors. Adv Mater 17:2793–2799

    Article  Google Scholar 

  176. Star A, Tu E, Niemann J, Gabriel JCP, Joiner CS, Valcke C (2006) Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc Natl Acad Sci U S A 103:921–926

    Article  Google Scholar 

  177. Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2:85–120

    Article  Google Scholar 

  178. Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K (2011) Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew Chem Int Ed Engl 50:3710–3714

    Article  Google Scholar 

  179. Heller DA, Jin H, Martinez BM, Patel D, Miller BM, Yeung TK, Jena PV, Hobartner C, Ha T, Silverman SK, Strano MS (2009) Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. Nat Nanotechnol 4:114–120

    Article  Google Scholar 

  180. De La Zerda A, Zavaleta C, Keren S, Vaithilingam S, Bodapati S, Liu Z, Levi J, Smith BR, Ma TJ, Oralkan O, Cheng Z, Chen XY, Dai HJ, Khuri-Yakub BT, Gambhir SS (2008) Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat Nanotechnol 3:557–562

    Article  Google Scholar 

  181. Esser B, Schnorr JM, Swager TM (2012) Selective detection of ethylene gas using carbon nanotube–based devices: utility in determination of fruit ripeness. Angew Chem Int Ed Engl 51:5752–5756

    Article  Google Scholar 

  182. Snow ES, Perkins FK, Houser EJ, Badescu SC, Reinecke TL (2005) Chemical detection with a single-walled carbon nanotube capacitor. Science 307:1942–1945

    Article  Google Scholar 

  183. Hong SY, Tobias G, Al-Jamal KT, Ballesteros B, Ali-Boucetta H, Lozano-Perez S, Nellist PD, Sim RB, Finucane C, Mather SJ, Green MLH, Kostarelos K, Davis BG (2010) Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging. Nat Mater 9:485–490

    Article  Google Scholar 

  184. Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47:10182–10188

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran Tehrani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tehrani, M., Khanbolouki, P. (2018). Carbon Nanotubes: Synthesis, Characterization, and Applications. In: Balasubramanian, G. (eds) Advances in Nanomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-64717-3_1

Download citation

Publish with us

Policies and ethics