Skip to main content

Robust Features for Snapshot Hyperspectral Terrain-Classification

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10424))

Included in the following conference series:

Abstract

Hyperspectral imaging increases the amount of information incorporated per pixel in comparison to normal RGB color cameras. Conventional spectral cameras as used in satellite imaging use spatial or spectral scanning during acquisition which is only suitable for static scenes. In dynamic scenarios, such as in autonomous driving applications, the acquisition of the entire hyperspectral cube at the same time is mandatory. We investigate the eligibility of novel snapshot hyperspectral cameras which capture an entire hyperspectral cube without requiring moving parts or line-scanning. Captured hyperspectral data is used for multi class terrain classification utilizing machine learning techniques. Prior to classification, the data is segmented using Superpixel segmentation which is modified to work successfully on hyperspectral data. We further investigate a simple approach to normalize the hyperspectral data in terms of illumination, which yields vast improvements in classification accuracy, preventing most errors caused by shading and other influences. Furthermore we utilize Gabor texture features which add spatial information to the feature space without increasing the data dimensionality in an excessive fashion. The multi-class classification is evaluated against a novel hyperspectral ground truth dataset specifically created for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Bradley, D.M., Unnikrishnan, R., Bagnell, J.: Vegetation detection for driving in complex environments. In: 2007 IEEE International Conference on Robotics and Automation, pp. 503–508. IEEE (2007)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Brown, M., Süsstrunk, S.: Multi-spectral sift for scene category recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 177–184. IEEE (2011)

    Google Scholar 

  5. Camps-Valls, G., Bruzzone, L.: Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 43(6), 1351–1362 (2005)

    Article  Google Scholar 

  6. Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)

    Article  Google Scholar 

  7. Camps-Valls, G., Tuia, D., Gómez-Chova, L., Jiménez, S., Malo, J.: Remote sensing image processing. Synth. Lect. Image Video Multimedia Process. 5(1), 1–192 (2011)

    Article  MATH  Google Scholar 

  8. Cavigelli, L., Bernath, D., Magno, M., Benini, L.: Computationally efficient target classification in multispectral image data with deep neural networks. In: SPIE Security+Defence. p. 99970L. International Society for Optics and Photonics (2016)

    Google Scholar 

  9. Chetan, J., Krishna, M., Jawahar, C.: Fast and spatially-smooth terrain classification using monocular camera. In: Pattern Recognition (ICPR), 2010 20th International Conference on. pp. 4060–4063. IEEE (2010)

    Google Scholar 

  10. Fauvel, M., Benediktsson, J.A., Chanussot, J., Sveinsson, J.R.: Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(11), 3804–3814 (2008)

    Article  Google Scholar 

  11. Finlayson, G.D., Hordley, S.D., Lu, C., Drew, M.S.: On the removal of shadows from images. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 59–68 (2006)

    Article  Google Scholar 

  12. Geelen, B., Tack, N., Lambrechts, A.: A compact snapshot multispectral imager with a monolithically integrated per-pixel filter mosaic. In: SPIE Moems-Mems. p. 89740L. International Society for Optics and Photonics (2014)

    Google Scholar 

  13. Gevers, T., Stokman, H., Weijer, J.V.d.: Colour constancy from hyper-spectral data. In: Proceedings of the British Machine Vision Conference, pp. 30.1-30.10. BMVA Press (2000)

    Google Scholar 

  14. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  15. Javanbakhti, S., Zinger, S., de With, P.H.N.: Context-based region labeling for event detection in surveillance video. In: 2014 International Conference on Information Science, Electronics and Electrical Engineering, vol. 1, pp. 94–98, April 2014

    Google Scholar 

  16. Li, J., Bioucas-Dias, J.M., Plaza, A.: Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 48(11), 4085–4098 (2010)

    Google Scholar 

  17. Li, J., Bioucas-Dias, J.M., Plaza, A.: Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 50(3), 809–823 (2012)

    Article  Google Scholar 

  18. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  19. Naghdy, G.A., Wang, J., Ogunbona, P.O.: Texture analysis using gabor wavelets, vol. 2657, pp. 74–85 (1996)

    Google Scholar 

  20. Namin, S.T., Petersson, L.: Classification of materials in natural scenes using multi-spectral images. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1393–1398. IEEE (2012)

    Google Scholar 

  21. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., et al.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113, S110–S122 (2009)

    Article  Google Scholar 

  22. Salamati, N., Larlus, D., Csurka, G.: Combining visible and near-infrared cues for image categorisation. In: Proceeding of the 22nd British Machine Vision Conference (BMVC 2011), No. EPFL-CONF-169247 (2011)

    Google Scholar 

  23. Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)

    Article  Google Scholar 

  24. Winkens, C., Sattler, F., Paulus, D.: Hyperspectral terrain classification for ground vehicles. In: 12th International Conference on Computer Vision Theory and Applications (VISAPP) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Winkens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Winkens, C., Kobelt, V., Paulus, D. (2017). Robust Features for Snapshot Hyperspectral Terrain-Classification. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10424. Springer, Cham. https://doi.org/10.1007/978-3-319-64689-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64689-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64688-6

  • Online ISBN: 978-3-319-64689-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics