Skip to main content

Indoor Navigation with Micro Inertial Navigation Technology

  • Chapter
  • First Online:
Advanced Technologies in Practical Applications for National Security

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 106))

  • 1022 Accesses

Abstract

This paper concentrate mainly on the indoor navigation aspects and secondly on inertial measurement unit (IMU) filtering. Presented reckoning navigation algorithms, are named odometry algorithms and are based on double acceleration integral algorithms. Acceleration before being integrated is multiplexed with orientation data that both are acquired from IMU sensor, which is mounted in the sole of the shoe. This article presents the first prototype of the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gucma, M., & Montewka, J. (2006). Podstawy morskiej nawigacji inercyjnej. Akademia Morska.

    Google Scholar 

  2. Switonski, A., Josinski, H., Jedrasiak, K., Polanski, A., & Wojciechowski, K. (2010). Classification of poses and movement phases. Lecture notes in computer science.

    Google Scholar 

  3. Ryt, A., Sobel, D., Kwiatkowski, J., Domzal, M., Jedrasiak, K., & Nawrat, A. (2015). Real-time laser point tracking. In International Conference on Computer Vision and Graphics (pp. 542–551).

    Google Scholar 

  4. Sobel, D., Jedrasiak, K., Daniec, K., Wrona, J., Jurgas, P., & Nawrat, A. (2014) Camera calibration for tracked vehicles augmented reality applications. In Innovative Control Systems for Tracked Vehicle Platforms (pp. 147–162).

    Google Scholar 

  5. Nawrat, A., & Jedrasiak, K. (2008) Fast colour recognition algorithm for robotics. Problemy Eksploatacji, 69–76.

    Google Scholar 

  6. Daniec, K., Iwaneczko, P., Jedrasiak, K., & Nawrat, A. (2013) Prototyping the autonomous flight algorithms using the prepar3d simulator. Vision based systems for UAV applications (pp. 219–232).

    Google Scholar 

  7. Woodman, O. J. (2007) An introduction to inertial navigation. University of Cambridge, Computer Laboratory, Technical report UCAMCL-TR-696 (Vol. 14, p. 15).

    Google Scholar 

  8. Bonisławski, A., Juchniewicz, M., & Piotrowski, R. (2014) Projekt techniczny i budowa platformy latającej typu quadrocopter. Pomiary Automatyka Robotyka (Vol. 18).

    Google Scholar 

  9. Parvin, R. H. (1962). Inertial navigation systems: Prelaunch alignment. IRE Transactions on Aerospace and Navigational Electronics, 3, 141–145.

    Article  Google Scholar 

  10. Stieler, B., & Winter, H. (1982) Agard flight test instrumentation series. volume 15. Gyroscopic instruments and their application to flight testing. Technica Report DTIC Document.

    Google Scholar 

  11. King, A. (1998). Inertial navigation-forty years of evolution. GEC Review, 13(3), 140–149.

    Google Scholar 

  12. Britting, K. R. (2010) Inertial navigation systems analysis. Artech House.

    Google Scholar 

  13. Titterton, D., & Weston, J. L. (2004). Strapdown inertial navigation technology (Vol. 17). IET.

    Google Scholar 

  14. Weston, J., & Titterton, D. (2000). Modern inertial navigation technology and its application. Electronics & Communication Engineering Journal, 12(2), 49–64.

    Article  Google Scholar 

  15. Barshan, B., & Durrant-Whyte, H. F. (1995). Inertial navigation systems for mobile robots. IEEE Transactions on Robotics and Automation, 11(3), 328–342.

    Article  Google Scholar 

  16. Madgwick, S. O., Harrison, A. J., & Vaidyanathan, R. (2011). Estimation of imu and marg orientation using a gradient descent algorithm. In 2011 IEEE International Conference on Rehabilitation Robotics (pp. 1–7). IEEE.

    Google Scholar 

  17. Madgwick, S. (2010). An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK).

    Google Scholar 

  18. Carberry, J., Hinchly, G., Buckerfield, J., Tayler, E., Burton, T., Madgwick, S., & Vaidyanathan, R. (2011). Parametric design of an active ankle foot orthosis with passive compliance. In 2011 24th International Symposium on Computer-Based Medical Systems (CBMS) (pp. 1–6). IEEE.

    Google Scholar 

  19. Madgwick, S. Gait tracking with x-imu. Zasoby sieciowe, dost p 24.07.2016.

    Google Scholar 

  20. Euston, M., Coote, P., Mahony, R., Kim, J., & Hamel, T. (2008) A complementary filter for attitude estimation of a fixed-wing uav. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 340–345). IEEE.

    Google Scholar 

  21. Mahony, R., Hamel, T., & Pflimlin, J.-M. (2008). Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control, 53(5), 1203–1218.

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahony, R., Hamel, T., & Pflimlin, J.-M. (2005). Complementary filter design on the special orthogonal group so (3). In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 1477–1484) IEEE.

    Google Scholar 

  23. Baldwin, G., Mahony, R., Trumpf, J., Hamel, T., & Cheviron, T. (2007) Complementary filter design on the special euclidean group se (3). In Control Conference (ECC), 2007 European (pp. 3763–3770). IEEE.

    Google Scholar 

  24. Kędzierski, J., & Konar, K. N. R. (2008) Filtr kalmana-zastosowania w prostych układach sensorycznych,” Artykuł koła naukowego KoNaR Politechnika Wrocławska.

    Google Scholar 

  25. Wnuk, M. (2014) Filtracja komplementarna w inercyjnych czujnikach orientacji. Granth S30080 (Vol. SPR 3).

    Google Scholar 

  26. Grygiel, R., Bieda, R., & Wojciechowski, K. (2014). Metody wyznaczania kątów z żyroskopów dla filtru komplementarnego na potrzeby określenia orientacji imu. Przegląd Elektrotechniczny, 9, 217–224.

    Google Scholar 

  27. Bieda, R., & Grygiel, R. (2014). Wyznaczanie orientacji obiektu w przestrzeni z wykorzystaniem naiwnego filtru kalmana. Przeglad Elektrotechniczny, 90, 34–41.

    Google Scholar 

  28. Won, S.-H. P., Melek, W. W., & Golnaraghi, F. (2010). A kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system. IEEE Transactions on Industrial Electronics, 57(5), 1787–1798.

    Article  Google Scholar 

  29. Won, S.-H. P., Golnaraghi, F., & Melek, W. W. (2009). A fastening tool tracking system using an imu and a position sensor with kalman filters and a fuzzy expert system. IEEE Transactions on Industrial Electronics, 56(5), 1782–1792.

    Article  Google Scholar 

  30. Kolecki, J. (2012). Wykorzystanie jednostki imu typu mems do określenia przybliżonych elementów orientacji zdjęć naziemnych. Archiwum Fotogrametrii, Kartografii i Teledetekcji (Vol. 24).

    Google Scholar 

  31. Kolecki, J. (2013) Wyznaczanie elementów orientacji zewnetrznej zdjęć naziemnych z wykorzystaniem obserwacji fotogrametrycznych i inercyjnych oraz satelitarnego systemu pozycjonowania. Wydawnictwa AGH.

    Google Scholar 

  32. Jiménez, A. R., Seco, F., Prieto, J. C., & Guevara, J. (2010) Indoor pedestrian navigation using an ins/ekf framework for yaw drift reduction and a foot-mounted imu. In 2010 7th Workshop on Positioning Navigation and Communication (WPNC) (pp. 135–143). IEEE.

    Google Scholar 

  33. Mirzaei, F. M., & Roumeliotis, S. I. (2008). A kalman filter-based algorithm for imu-camera calibration: Observability analysis and performance evaluation. IEEE tRansactions on Robotics, 24(5), 1143–1156.

    Article  Google Scholar 

  34. Ruiz, A. R. J., Granja, F. S., Honorato, J. C. P., & Rosas, J. I. G. (2012). Accurate pedestrian indoor navigation by tightly coupling foot-mounted imu and rfid measurements. IEEE Transactions on Instrumentation and Measurement, 61(1), 178–189.

    Article  Google Scholar 

  35. Mirzaei, F. M. & Roumeliotis, S. I. (2007). 1| a kalman filter-based algorithm for imu-camera calibration. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2427–2434). IEEE.

    Google Scholar 

  36. Filter, E. E. K. (2007) Vision-aided navigation for small uavs in gps-challenged environments. In AIAA Infotech.

    Google Scholar 

  37. Hellmers, H., Norrdine, A., Blankenbach, J. & Eichhorn, A. (2013) An imu/magnetometer-based indoor positioning system using kalman filtering,” in 2013 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1–9). IEEE.

    Google Scholar 

  38. Nützi, G., Weiss, S., Scaramuzza, D., & Siegwart, R. (2011). Fusion of imu and vision for absolute scale estimation in monocular slam. Journal of Intelligent & Robotic Systems, 61(1–4), 287–299.

    Article  Google Scholar 

  39. Yun, X., Bachmann, E. R., Moore, H., & Calusdian, J. (2007). Self-contained position tracking of human movement using small inertial/magnetic sensor modules. In Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 2526–2533). IEEE.

    Google Scholar 

  40. Kelly, A. (2011). Personal navigation system based on dual shoe-mounted imus and intershoe ranging. In Proceedings of the Precision Personnel Locator Workshop.

    Google Scholar 

  41. Höflinger, F., Müller, J., Zhang, R., Reindl, L. M., & Burgard, W. (2013). A wireless micro inertial measurement unit (imu). IEEE Transactions on Instrumentation and Measurement, 62(9), 2583–2595.

    Article  Google Scholar 

  42. Jędrasiak, K., Daniec, K., & Nawrat, A. (2013). The low cost micro inertial measurement unit. In 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA) (pp. 403–408) IEEE.

    Google Scholar 

  43. Josinski, H., Switonski, A., Jedrasiak, K., & Kostrzewa, D. (2012) Human identification based on gait motion capture data. Proceedings of the 2012 International MultiConference of Engineers and Computer Scientists.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Iwaneczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Iwaneczko, P., Jȩdrasiak, K., Nawrat, A. (2018). Indoor Navigation with Micro Inertial Navigation Technology. In: Nawrat, A., Bereska, D., Jędrasiak, K. (eds) Advanced Technologies in Practical Applications for National Security. Studies in Systems, Decision and Control, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-64674-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64674-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64673-2

  • Online ISBN: 978-3-319-64674-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics