Skip to main content

Advanced Ballistic Model and Its Experimental Evaluation for Professional Simulation Systems

  • Chapter
  • First Online:
  • 1012 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 106))

Abstract

Training of officers, soldiers, guards and security personnel as representatives of the state security system responsible for ensuring public safety is a complex and multifaceted process, especially in terms of use of firearms. This process should be conducted at each level of tasks, which include the level of intervention, tactic and strategic while taking into account practical experience gained during domestic and abroad operations. For the purposes of this study the models of ballistic simulation systems will refer only to the most important areas from the point of view of the realism of the training process conducted on the basis of simulation systems designed to support the training of officers and soldiers. Multimedia shooting ranges are simulation systems allowing firearms training. Each of the multimedia shooting systems consists of two parts: the real part and the virtual part. The real part consists of the shooter, firearm or replica firearm, the vision system which allows detection of bullet hits, a computer and a screen for projection of shooting targets. Virtual part consists of a generated by computer simulated virtual world with shooting targets. Virtual world generated by the computer is displayed on the screen by the projector. In the article the results of implementation of the ballistics equations in the physical engine is presented. The Implementation reproduces projectile motion in the atmosphere in a manner consistent with the data from the ballistic charts from ammunition manufacturers. In the article the mathematical model of projectile motion has been extended to a mathematical model of the atmosphere, in order to simulate the atmosphere parameters like temperature, density and pressure at the given time of flight of the projectile. The use of ballistics equations implemented in the physics engine of the multimedia shooting range will increase the realism of the shooting training. The implemented ballistic model will allow to conduct training on longer distances than allowed by a traditional indoor shooting range, due to a faithful reproduction of projectile’s behavior in the atmosphere. Traditional indoor shooting ranges can be converted into a multimedia shooting ranges, which increase training opportunities through the use of modern computer graphics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Retrieved June 15, 2016, from https://upload.wikimedia.org/wikipedia/commons/b/be/Defense.gov_News_Photo_090425-A-2315M-407.jpg.

  2. Cymerski J. (2014). Doskonalenie zawodowe funkcjonariuszy Biura Ochrony Rządu, [w:] P. Bogdalski, J. Cymerski, K. Jałoszyński, Bezpieczeństwo osób podlegających ustawowo ochronie wobec zagrożeń XXI wieku, Szczytno s. 382.

    Google Scholar 

  3. Cymerski, J. (2015). Współpraca Biura Operacji Antyterrorystycznych KGP z Biurem Ochrony Rządu w ramach struktur przeciwdziałania i zwalczania zagrożeń terrorystycznych [w:] K. Jałoszyński, W Zubrzycki, A. Babiński, Policyjne Siły Specjalne w Polsce, Szczytno, s. 482.

    Google Scholar 

  4. Retrieved November 10, 2016, from http://www.specops.pl/vortal/taktyka_czarna/czarna_main.htm.

  5. Retrieved November 10, 2016, from http://www.specops.pl/vortal/taktyka_czarna/MOUT/MOUT.htm.

  6. Retrieved November 10, 2016, from http://www.specops.pl/vortal/taktyka_zielona/zielona_main.htm.

  7. Niezgoda, T., & Barnat, W. (2008). Analysis of protective structures made of various composite materials subjected to impact. Materials Science and Engineering A, 483, 705–707.

    Article  Google Scholar 

  8. Barnat, W., Dziewulski, P., Niezgoda, T., & Panowicz, R. (2011). Application of composites to impact energy absorption. Computational Materials Science, 50(4), 1233–1237.

    Article  Google Scholar 

  9. Barnat, W., Panowicz, R., & Niezgoda, T. (2012). Numerical and experimental comparison of combined multilayer protective panels. Acta Mechanica Et Automatica, 6(1), 148–153.

    Google Scholar 

  10. Sokołowski, D., & Barnat, W. (2016). Numerical and experimental research on the impact of the Twaron T750 fabric layer number on the stab resistance of a body armour package. Fibres and Textiles in Eastern Europe, 24(1), 115.

    Google Scholar 

  11. Babiarz, A., Bieda, R., Jedrasiak, K., & Nawrat, A. (2013). Machine vision in autonomous systems of detection and location of objects in digital images. In Vision based systems for UAV applications (pp. 3–25). Springer.

    Google Scholar 

  12. Bereska, D., Daniec, K., Fras, S., Jedrasiak, K., Malinowski, M., & Nawrat, A. (2013). System for multi-axial mechanical stabilization of digital camera. In Vision based systems for UAV applications (pp. 177–189). Springer.

    Google Scholar 

  13. Daniec, K., Jedrasiak, K., Koteras, R., & Nawrat, A. (2013). Embedded micro inertial navigation system. In Applied mechanics and materials (Vol. 249, pp. 1234–1246). Trans Tech Publications.

    Google Scholar 

  14. Jedrasiak, K., Andrzejczak, M., & Nawrat, A. (2014). SETh: the method for long-term object tracking. Comput. Vis. Graph. 8671, 302–315. Lecture Notes in Computer Science, 316.

    Google Scholar 

  15. Niezgoda, T., Barnat, W., & Ochelski, S. Energy absorption investigation of filling tubes. September 23rd–26th, 2009 Montanuniversität Leoben/Austria, 161.

    Google Scholar 

  16. 50 BMG ammunition ballistic chart. Retrieved May 07, 2016, from https://barrett.net/accessories/ammunition/50bmgm33ball/.

  17. Jedrasiak, K., Nawrat, A., & Wydmanska, K. (2013) SETh-link the distributed management system for unmanned mobile vehicles. In Advanced Technologies for Intelligent Systems of National Border Security (pp. 247–256). Heidelberg: Springer.

    Google Scholar 

  18. Prace minerskie i niszczenia, Sztab Generalny, szefostwo Wojsk inżynieryjnych Warszawa 1995r.

    Google Scholar 

  19. Persson, A. O. The coriolis effect: Four centuries of conflict between common sense and mathematics, Part I: A history to 1885. Retrieved May 9, 2016, from http://empslocal.ex.ac.uk/people/staff/gv219/classic.d/person_on_coriolis05.pdf (access 9.05.2016).

  20. Gacek, J. (1997). Balistyka Zewnętrzna, Część 1, Modelowanie zjawisk balistyki zewnętrznej i dynamiki lotu”, Warszawa.

    Google Scholar 

  21. Beckenbach E.F. Modern mathematics for the engineer. Retrieved May 7, 2016, from https://books.google.pl/books?hl=pl&lr=&id=E8vDAgAAQBAJ&oi=fnd&pg=PA36&ots=p_TLH2HQYa&sig=mUTFT24yCrT2s-k74xAZGxsHYmQ&redir_esc=y#v=onepage&q&f=false.

  22. Ejsmont J., Balistyka dla snajperów. Praktyczny poradnik.

    Google Scholar 

  23. 308 Ballistic Chart & Coefficient,Retrieved June 13, 2016. from http://gundata.org/blog/post/308-ballistics-chart/.

  24. Litz B., Applied ballistics for long range shooting: Understanding the elements and application of external ballistics for successful long range target shooting and Hunting.

    Google Scholar 

  25. 338 Lapua Magnum ammunition ballistic chart, Retrieved May 07, 2016, fromhttp://www.lapua.com/en/tactical-ammunition/centerfire-rifle-/-338-lapua-magnum-tactical-ammunition-cartridge.html.

  26. The International system of units SI. Retrieved May 4, 2016, from http://physics.nist.gov/Pubs/SP330/sp330.pdf (access 4.05.2016).

  27. Klamka, J. (1998). Metody Numeryczne. Wydawnictwo Politechniki Śląskiej, Gliwice.

    Google Scholar 

  28. G1 Drag Coefficient vs. Mach Number function. Retrieved June 9, 2016, from http://www.jbmballistics.com/ballistics/downloads/text/mcg1.txt.

  29. G7 Drag Coefficient vs. Mach Number function, http://www.jbmballistics.com/ballistics/downloads/text/mcg7.txt Retrieved 9 June 2016 from.

  30. x45 mm NATO Ballistic Chart and Coefficient. Retrieved June 13, 2016, from http://www.snipercentral.com/223-remington/.

  31. mm NATO Ballistic Chart & Coefficient. Retrieved June 13, 2016, from http://gundata.org/blog/post/9mm-ballistics-chart/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Jędrasiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Jędrasiak, K., Cymerski, J., Recha, P., Bereska, D., Nawrat, A. (2018). Advanced Ballistic Model and Its Experimental Evaluation for Professional Simulation Systems. In: Nawrat, A., Bereska, D., Jędrasiak, K. (eds) Advanced Technologies in Practical Applications for National Security. Studies in Systems, Decision and Control, vol 106. Springer, Cham. https://doi.org/10.1007/978-3-319-64674-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64674-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64673-2

  • Online ISBN: 978-3-319-64674-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics