Skip to main content

The Cosmochemistry of Boron Isotopes

  • Chapter
  • First Online:
Boron Isotopes

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The boron elemental abundances and isotopic compositions in the universe and constituents (stars, interstellar medium and the Solar System material) within it have important implications for the astrophysical origins of this element. Astronomical observations and laboratory analysis have revealed that despite a significant difference in boron abundances among different objects, the 11B/10B ratio of 4 appears to be ubiquitous (within measurement uncertainties) across the Galaxy. Galactic Cosmic Ray (GCR) spallation, which yields 11B/10B = 2.5, cannot have been the sole source of B; another mechanism that favors the production of 11B over that of 10B must have operated over the Galactic timescale. However, how exactly the Galaxy, interstellar medium, and the Solar System acquired the 11B/10B ratio of 4 remains poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The thermal nuclear reactions that destroy B isotopes are 10B(p,α)7Be(e )7Li(p,α)4He and 11B(p,α)8Be → 4He + 4He (Burbidge et al. 1957).

  2. 2.

    δ11B = (Rsp/Rstd − 1) × 1000, where Rsp and Rstd are the 11B/10B ratio of the sample and standard, respectively. In Chaussidon and Robert (1995), Rstd = 4.04558 is used (NBS951).

References

  • Agyei EK, McMullen CC (1968) A study of the isotopic abundance of boron from various sources. Canadian J Earth Sci 5:921–927

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements—meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Asplund M, Grevesse N, Sauval AJ, Scott P (2009) The chemical composition of the sun. Ann Rev Astro Astrophys 47:481–522

    Article  Google Scholar 

  • Bloemen H, Wijnands R, Bennett K, Diehl R, Hermsen W, Lichti G, Morris D, Ryan J, Schonfelder V, Strong AW, Swanenburg BN, de Vries C, Winkler C (1994) COMPTEL observations of the Orion complex: evidence for cosmic-ray induced gamma-ray lines. Astro Astrophys 281:L5–L8

    Google Scholar 

  • Bloemen H, Morris D, Knödlseder J, Bennett K, Diehl R, Hermsen W, Lichti G, van der Meulen RD, Oberlack U, Ryan J, Schönfelder V, Strong AW, de Vries C, Winkler C (1999) The revised COMPTEL orion results. Astrophys J Lett 521:L137–L140

    Article  Google Scholar 

  • Boesgaard AM, Heacox WD (1978) The abundance of boron in B- and A-type stars. Astrophys J 226:888–896

    Article  Google Scholar 

  • Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Modern Phys 29:547–650

    Article  Google Scholar 

  • Cassé M, Lehoucq R, Vangioni-Flam E (1995) Production and evolution of light elements in active star-forming regions. Nature 373:318–319

    Article  Google Scholar 

  • Chaussidon M, Robert F (1995) Nucleosynthesis of 11B-rich boron in the pre-solar cloud recorded in meteoritic chondrules. Nature 374:337–339

    Article  Google Scholar 

  • Chaussidon M, Robert F (1997) Comment on “Boron cosmochemistry II: boron nucleosynthesis and condensation temperature” by M. Zhai, Meteor Planet Sci, p 32

    Google Scholar 

  • Chaussidon M, Robert F (1998) 7Li/ 6Li and 11B/ 10B variations in chondrules from the Semarkona unequilibrated chondrite}. Earth Planet Sci Lett 164:577–589

    Article  Google Scholar 

  • Chaussidon M, Robert F, Mangin D, Hanon P, Rose EF (1997) Analytical procedures for the measurement of boron isotope compositions by ion microprobe in meteorites and mantle rocks. Geostand Newslett 21:7–17

    Article  Google Scholar 

  • Chaussidon M, Robert F, McKeegan KD (2006) Li and B isotopic variations in an Allende CAI: evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim Cosmochim Acta 70:224–245

    Article  Google Scholar 

  • Connelly JN, Bizzarro M, Krot AN, Nordlund Å, Wielandt D, Ivanova MA (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338:651–655

    Article  Google Scholar 

  • Cunha K, Smith VV (1999) A determination of the solar photospheric boron abundance. Astrophys J 512:1006–1013

    Article  Google Scholar 

  • Cunha K, Lambert DL, Lemke M, Gies DR, Roberts LC (1997) Boron abundances of B stars of the orion association. Astrophys J 478:211–224

    Article  Google Scholar 

  • Desch SJ, Connolly HC Jr, Srinivasan G (2004) An interstellar origin for the beryllium-10 in calcium-rich, Aluminum-rich inclusions. Astrophys J 602:528–542

    Article  Google Scholar 

  • Federman SR, Lambert DL, Cardelli JA, Sheffer Y (1996) The boron isotope ratio in the interstellar medium. Nature 381:764–766

    Article  Google Scholar 

  • Federman SR, Sheffer Y, Lambert DL, Gilliland RL (1993) Detection of boron, cobalt, and other weak interstellar lines toward ζ Ophiuchi. Astrophys J 413:L51–L54

    Google Scholar 

  • Foster GL, Marschall HR, Palmer MR (2017) Boron isotope analysis of geologic materials. In: Marschall HR, Foster GL (eds) Boron isotopes—the fifth element, vol 7. Advances in isotope geochemistry. Springer, Heidelberg (Chapter 2)

    Google Scholar 

  • Fujiya W, Hoppe P, Ott U (2011) Hints for neutrino-process boron in presolar silicon carbide grains from supernovae. Astrophys J Lett 730:L7

    Article  Google Scholar 

  • Gibner PS, Mewaldt RA, Schindler SM, Stone EC, Webber WR (1992) The isotopic composition of cosmic-ray B, C, N, and O—evidence for an overabundance of O-18. Astrophys J Lett 391:L89–L92

    Article  Google Scholar 

  • Gounelle M, Shu FH, Shang H, Glassgold AE, Rehm KE, Lee T (2006) The irradiation origin of beryllium radioisotopes and other short-lived radionuclides. Astrophys J 640:1163–1170

    Article  Google Scholar 

  • Gounelle M, Chaussidon M, Rollion-Bard C (2013) Variable and extreme irradiation conditions in the early solar system inferred from the initial abundance of 10Be in isheyevo CAIs. Astrophys J Lett 763:L33

    Article  Google Scholar 

  • Grevesse N, Asplund M, Sauval AJ (2007) The solar chemical composition. Space Sci Rev 130:105–114

    Article  Google Scholar 

  • Hewins RH (1997) Chondrules. Ann Rev Earth Planet Sci 25:61

    Article  Google Scholar 

  • Hoppe P, Goswami JN, Krähenbühl U, Marti K (2001) Boron in chondrules. Meteor Planet Sci 36:1331–1343

    Article  Google Scholar 

  • Howk JC, Sembach KR, Savage BD (2000) The abundance of interstellar boron. Astrophys J 543:278–283

    Article  Google Scholar 

  • Ishikawa T, Nagaishi K (2011) High-precision isotopic analysis of boron by positive thermal ionization mass spectrometry with sample preheating. J Anal At Spectrom 26:359–365

    Article  Google Scholar 

  • Jura M, Meyer DM, Hawkins I, Cardelli JA (1996) The interstellar boron abundance toward orion. Astrophys J 456:598–601

    Article  Google Scholar 

  • Kohl JL, Parkinson WH, Withbroe GL (1977) The solar boron abundance. Astrophys J Lett 212:L101–L104

    Article  Google Scholar 

  • Koning AJ, Hilaire S, Dujivestijn MC (2007) TALYS-1.0. In: Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) Proceedings of the conference on nuclear data for science and technology, pp 211–214

    Google Scholar 

  • Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, Lierse von Gostomski C, Kossert K, Maiti M, Poutivtsev M, Remmert A (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Inst Meth Phys Res B 268:187–191

    Google Scholar 

  • Krombel KE, Wiedenbeck ME (1988) Isotopic composition of cosmic-ray boron and nitrogen. Astrophys J 328:940–953

    Article  Google Scholar 

  • Lambert DL, Sheffer Y, Federman SR, Cardelli JA, Sofia UJ, Knauth DC (1998) The 11B/10B ratio of local interstellar diffuse clouds. Astrophys J 494:614–622

    Article  Google Scholar 

  • Lauretta DS, Lodders K (1997) The cosmochemical behavior of beryllium and boron. Earth Planet Sci Lett 146:315–327

    Article  Google Scholar 

  • Liu M-C, McKeegan KD, Goswami JN, Marhas KK, Sahijpal S, Ireland TR, Davis AM (2009) Isotopic records in CM hibonites: implications for timescales of mixing of isotope reservoirs in the solar nebula. Geochim Cosmochim Acta 73:5051–5079

    Article  Google Scholar 

  • Liu M-C, Nittler LR, Alexander CMO, Lee T (2010) Lithium-beryllium-boron isotopic compositions in meteoritic hibonite: Implications for origin of 10Be and early Solar System irradiation. Astrophys J 719:L99–L103

    Article  Google Scholar 

  • Lodders K (2003) Solar system abundances and condensation temperatures of the elements. Astrophys J 591:1220–1247

    Article  Google Scholar 

  • MacPherson GJ, Huss GR, Davis AM (2003) Extinct 10Be in type A calcium-aluminum-rich inclusions from CV chondrites. Geochim Cosmochim Acta 67:3165–3179

    Article  Google Scholar 

  • Marhas KK, Goswami JN, Davis AM (2002) Short-lived nuclides in hibonite grains from murchison: evidence for solar system evolution. Science 298:2182–2185

    Article  Google Scholar 

  • Marschall HR, Monteleone BD (2015) Boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry. Geostand Geoanal Res 39:31–46

    Article  Google Scholar 

  • Marschall HR (2017) Boron isotopes in the ocean floor realm and the mantle. In: Marschall HR, Foster GL (eds) Boron isotopes—The fifth element, advances in isotope geochemistry, vol 7. Springer, Heidelberg

    Google Scholar 

  • McKeegan KD, Chaussidon M, Robert F (2000) Incorporation of short-lived 10Be in a calcium-aluminum-rich inclusion from the allende meteorite. Science 289:1334–1337

    Article  Google Scholar 

  • McKeegan KD, Chaussidon M, Krot AN, Robert F, Goswami JN, Hutcheon ID (2001) Extinct radionuclide abundances in Ca, Al-rich inclusions from the CV chondrites Allende and Efremovka: a search for synchronocity. In: LPSCXXXII, #2175 (abstract)

    Google Scholar 

  • Meneguzzi M, York DG (1980) Detection of interstellar boron in front of kappa Orionus. Astrophys J Lett 235:L111–L114

    Article  Google Scholar 

  • Meneguzzi M, Audouze J, Reeves H (1971) The production of the elements Li, Be, B by galactic cosmic rays in space and its relation with stellar observations. Astro Astrophys 15:337–359

    Google Scholar 

  • Morris MA, Boley AC, Desch, SJ, Athanassiadou T (2012) Chondrule formation in bow shocks around eccentric planetary embryos. Astrophys J 752:27 (17 pp)

    Google Scholar 

  • Praderie F, Milliard B, Pitois ML, Boesgaard AM (1977) The abundance of boron in VEGA and Sirius. Astrophys J 214:130–139

    Article  Google Scholar 

  • Prantzos N (2007) Origin and evolution of the light nuclides. Space Sci Rev 130:27–42

    Article  Google Scholar 

  • Prantzos N (2012) Production and evolution of Li, Be, and B isotopes in the Galaxy. Astro Astrophys 542:A67

    Article  Google Scholar 

  • Proffitt CR, Quigley MF (2001) Boron abundances in early B stars: results from the B III resonance line in IUE data. Astrophys J 548:429–438

    Article  Google Scholar 

  • Proffitt CR, Jönsson P, Litzén U, Pickering JC, Wahlgren GM (1999) Goddard high-resolution spectrograph observations of the B III resonance doublet in early B stars: abundances and isotope ratios. Astrophys J 516:342–348

    Article  Google Scholar 

  • Ramaty R, Kozlovsky B, Lingenfelter RE (1979) Nuclear gamma-rays from energetic particle interactions. Astrophys J Suppl 40:487–526

    Article  Google Scholar 

  • Ramaty R, Kozlovsky B, Lingenfelter RE (1996) Light isotopes, extinct radioisotopes, and gamma-ray lines from low-energy cosmic-ray interactions. Astrophys J 456:525

    Article  Google Scholar 

  • Reeves H, Fowler WA, Hoyle F (1970) Galactic cosmic ray origin of Li, Be and B in stars. Nature 226:727–729

    Article  Google Scholar 

  • Ritchey AM, Federman SR, Sheffer Y, Lambert DL (2011) The abundance of boron in diffuse interstellar clouds. Astrophys J 728:70 (37 pp)

    Google Scholar 

  • Scott ERD, Krot AN (2014) 1.2—chondrites and their components. In: Davis AM (ed) Meteorites and cosmochemical processes. Treatise of geochemistry, vol 1, 2nd edn, pp 65–137

    Google Scholar 

  • Shen JJ, You CF (2003) A 10-fold improvement in the precision of boron isotopic analysis by negative thermal ionization mass spectrometry. Anal Chem 75:1972–1977

    Article  Google Scholar 

  • Shima M (1962) Boron in meteorites. J Geophys Res 67:4521–4523

    Article  Google Scholar 

  • Shima M (1963) Geochemical study of boron isotopes. Geochim Cosmochim Acta 27:911–913

    Article  Google Scholar 

  • Simpson JA (1983) Elemental and isotopic composition of the galactic cosmic rays. Ann Rev Nucl Part Sci 33:323–382

    Article  Google Scholar 

  • Srinivasan G, Chaussidon M (2013) Constraints on 10Be and 41Ca distribution in the early solar system from 26Al and 10Be studies of efremovka CAIs. Earth Planet Sci Lett 374:11–23

    Article  Google Scholar 

  • Sugiura N (2001) Boron isotopic compositions in chondrules: anorthite-rich chondrules in the Yamato 82094 (CO3) Chondrite. In: LPSCXXXII, #1277 (abstract)

    Google Scholar 

  • Sugiura N, Shuzou Y, Ulyanov A (2001) Beryllium-boron and aluminum-magnesium chronology of calcium-aluminum-rich inclusions in CV chondrites. Meteor Planet Sci 36:1397–1408

    Article  Google Scholar 

  • Tatischeff V, Duprat J, de Séréville N (2014) Light-element nucleosynthesis in a molecular cloud interacting with a supernova remnant and the origin of beryllium-10 in the protosolar nebula. Astrophys J 796:124 (20 pp)

    Google Scholar 

  • Venn KA, Brooks AM, Lambert DL, Lemke M, Langer N, Lennon DJ, Keenan FP (2002) Boron abundances in B-type stars: a test of rotational depletion during main-sequence evolution. Astrophys J 565:571–586

    Article  Google Scholar 

  • Wielandt D, Nagashima K, Krot AN, Huss GR, Ivanova MA, Bizzarro M (2012) Evidence for multiple sources of 10Be in the early solar system. Astrophys J Lett 748:L25

    Article  Google Scholar 

  • Woosley SE, Weaver TA (1995) The evolution and explosion of massive stars. II. Explosive hydrodynamics and nucleosynthesis. Astrophys J Suppl 101:181–235

    Article  Google Scholar 

  • Woosley SE, Hartmann DH, Hoffman RD, Haxton WC (1990) The nu-process. Astrophys J 356:272–301

    Article  Google Scholar 

  • Xiao YK, Wang L (1998) Effect of NO3 on the isotopic measurement of boron. Int J Mass Spec 178:213–220

    Article  Google Scholar 

  • Yiou F, Baril M, de Citres JD, Fontes P, Gradsztajn E, Bernas R (1968) Mass-spectrometric measurement of lithium, beryllium, and boron isotopes produced in 16O by high-energy protons, and some astrophysical implications. Phys Rev 166:968–974

    Article  Google Scholar 

  • Yoshida T, Kajino T (2005) Supernova neutrino process and its impact on the galactic chemical evolution of the light elements. Nucl Phys A 758:35–38

    Article  Google Scholar 

  • Yoshida T, Kajino T, Hartmann DH (2005) Constraining the spectrum of supernova neutrinos from ν-process induced light element synthesis. Phys Rev Lett 94:231101

    Article  Google Scholar 

  • Zhai M (1995) Boron cosmochemistry. Part II: Boron nucleosynthesis and condensation temperature. Meteoritics 30:733–737

    Article  Google Scholar 

  • Zhai M, Shaw DM (1994) Boron cosmochemistry. Part 1: Boron in meteorites. Meteoritics 29:607–615

    Article  Google Scholar 

  • Zhai M, Nakamura E, Shaw DM, Nakano T (1996) Boron isotope ratios in meteorites and lunar rocks. Geochim Cosmochim Acta 60:4877–4881

    Article  Google Scholar 

  • Zhang J, Dauphas N, Davis AM, Leya I, Fedkin A (2012) The proto-Earth as a significant source of lunar material. Nat Geosci 5:251–255

    Article  Google Scholar 

  • Zinner E (2014) Presolar grains. In: Davis AM (ed) Meteorites and cosmochemical processes. Treatise of geochemistry, vol 1, 2nd edn, pp 181–213

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Horst Marschall for his invitation to write this review paper and his comments on the first and final versions of the manuscript. Constructive comments from two reviewers, Drs. Glenn MacPherson and Don Burnett, greatly improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, MC., Chaussidon, M. (2018). The Cosmochemistry of Boron Isotopes. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-64666-4_11

Download citation

Publish with us

Policies and ethics