Skip to main content

The Response of Manicaria saccifera Natural Fabric Reinforced PLA Composites to Impact by Fragment Simulating Projectiles

  • Conference paper
  • First Online:
Book cover Advances in Natural Fibre Composites

Abstract

This chapter presents the impact behavior of a recently developed green composite material made of Manicaria saccifera natural fabric reinforced Poly-Lactic Acid (PLA). Composite coupons made of PLA and Manicaria saccifera fabric were produced by compression molding using the film stacking method. The composite ballistic limit (V50) was determined by subjecting PLA/Manicaria coupons, of varying lay-ups and thicknesses, to ballistic impact loading using fragment simulating projectiles (FSPs) according to the MIL-STD-662F standard. It was found that coupons with areal densities between 0.2 and 0.3 g/cm2 displayed a V50 between 50 and 70 m/s. Also, it was found that the V50 increased nonlinearly as a function of coupon thickness, but it does not depend on the composite stacking sequence. Finally, the energy absorbed by the material at impact on complete penetrations is uniform and independent of the striking velocity, whereas for partial penetrations increases exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laborel-Préneron, A., et al. (2016). Plant aggregates and fibers in earth construction materials: A review. Construction and Building Materials, 111, 719–734.

    Article  Google Scholar 

  2. Korjenic, A., Zach, J., & Hroudová, J. (2016). The use of insulating materials based on natural fibers in combination with plant facades in building constructions. Energy and Buildings, 116, 45–58.

    Article  Google Scholar 

  3. Mohanty, A., Misra, M., & Drzal, L. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1), 19–26.

    Article  Google Scholar 

  4. O’donnell, A., Dweib, M., & Wool, R. (2004). Natural fiber composites with plant oil-based resin. Composites Science and Technology, 64(9), 1135–1145.

    Google Scholar 

  5. Burgueño, R., et al. (2004). Load-bearing natural fiber composite cellular beams and panels. Composites Part A Applied Science and Manufacturing, 35(6), 645–656.

    Article  Google Scholar 

  6. Kalyankar, R., & Uddin, N. (2012). Structural characterization of natural fiber reinforced polymeric (NFRP) laminates for building construction. Journal of Polymers and the Environment, 20(1), 224–229.

    Article  Google Scholar 

  7. Singh, B., et al. (2011). Natural fiber-based composite building materials. In Cellulose fibers: Bio-and nano-polymer composites (pp. 701–720). Berlin: Springer.

    Google Scholar 

  8. Faruk, O., et al. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596.

    Article  Google Scholar 

  9. Jover, N., Shafiq, B., & Vaidya, U. (2014). Ballistic impact analysis of balsa core sandwich composites. Composites Part B Engineering, 67, 160–169.

    Article  Google Scholar 

  10. Ahmad, M. R., et al. (2008). Effect of fabric stitching on ballistic impact resistance of natural rubber coated fabric systems. Materials and Design, 29(7), 1353–1358.

    Article  Google Scholar 

  11. Cheeseman, B. A., & Bogetti, T. A. (2003). Ballistic impact into fabric and compliant composite laminates. Composite Structures, 61(1), 161–173.

    Article  Google Scholar 

  12. Lee, Y. S., Wetzel, E. D., & Wagner, N. J. (2003). The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid. Journal of Materials Science, 38(13), 2825–2833.

    Article  Google Scholar 

  13. Yahaya, R., et al. (2016). Investigating ballistic impact properties of woven kenaf-aramid hybrid composites. Fibers and Polymers, 17(2), 275–281.

    Article  Google Scholar 

  14. Nguyen, L., et al. (2016). The efficiency of ultra-high molecular weight polyethylene composite against fragment impact. Experimental Mechanics, 56(4), 595–605.

    Article  Google Scholar 

  15. Morye, S., et al. (2000). Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Science and Technology, 60(14), 2631–2642.

    Article  Google Scholar 

  16. Nunes, L., Paciornik, S., & d’Almeida, J. (2004). Evaluation of the damaged area of glass-fiber-reinforced epoxy-matrix composite materials submitted to ballistic impacts. Composites Science and Technology, 64(7), 945–954.

    Google Scholar 

  17. Deka, L., Bartus, S., & Vaidya, U. (2008). Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact. Journal of materials science, 43(13), 4399.

    Article  Google Scholar 

  18. Wambua, P., et al. (2007). The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Composite Structures, 77(2), 232–240.

    Article  Google Scholar 

  19. Nascimento, L. F. C., et al. (2017). Evaluation of ballistic armor behavior with epoxy composite reinforced with Malva fibers. In Characterization of Minerals, Metals, and Materials (pp. 647–655). Berlin: Springer.

    Google Scholar 

  20. Porras, A., Maranon, A., & Ashcroft, I. (2015). Characterization of a novel natural cellulose fabric from Manicaria saccifera palm as possible reinforcement of composite materials. Composites Part B Engineering, 74, 66–73.

    Article  Google Scholar 

  21. Gupta, A., & Kumar, V. (2007). New emerging trends in synthetic biodegradable polymers–polylactide: A critique. European Polymer Journal, 43(10), 4053–4074.

    Article  Google Scholar 

  22. Shih, Y.-F., Huang, C.-C., & Chen, P.-W. (2010). Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks. Materials Science and Engineering A, 527(6), 1516–1521.

    Article  Google Scholar 

  23. Mohanty, A. K., Misra, M., & Drzal, L. T. (2005). Natural fibers, biopolymers, and biocomposites. Boca Raton: CRC Press.

    Google Scholar 

  24. Porras, A., Maranon, A., & Ashcroft, I. (2016). Optimal tensile properties of a Manicaria-based biocomposite by the Taguchi method. Composite Structures, 140, 692–701.

    Article  Google Scholar 

  25. Buchely, M. F., Maranon, A., & Silberschmidt, V. V. (2016). Material model for modeling clay at high strain rates. International Journal of Impact Engineering, 90, 1–11.

    Article  Google Scholar 

  26. MIL-DTL-46593B—Projectile, Calibers 0.22, 0.30, 0.50, and 20 MM Fragment Simulating, 2006.

    Google Scholar 

  27. Stilp, A. J. (2005). Sabot designs for launching penetrators and projectiles. In High-pressure shock compression of solids VIII (pp. 201–225). Berlin: Springer.

    Google Scholar 

  28. MIL-STD-662F, Military standard V50 ballistic test for armor, 1997.

    Google Scholar 

  29. Abrate, S. (2007). Ballistic impact on composites. In 16th International Conference on Composite Materials.

    Google Scholar 

  30. Hsieh, A. J., et al. (2004). The effects of PMMA on ballistic impact performance of hybrid hard/ductile all-plastic-and glass-plastic-based composites, DTIC Document.

    Google Scholar 

  31. Nilakantan, G., & Nutt, S. (2014). Effects of fabric target shape and size on the V50 ballistic impact response of soft body armor. Composite Structures, 116, 661–669.

    Article  Google Scholar 

  32. Porras, A., Maranon, A., & Ashcroft, I. (2016). Thermo-mechanical characterization of Manicaria saccifera natural fabric reinforced poly-lactic acid composite lamina. Composites Part A Applied Science and Manufacturing, 81, 105–110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia Porras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Quintero, S., Porras, A., Hernandez, C., Maranon, A. (2018). The Response of Manicaria saccifera Natural Fabric Reinforced PLA Composites to Impact by Fragment Simulating Projectiles. In: Fangueiro, R., Rana, S. (eds) Advances in Natural Fibre Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-64641-1_9

Download citation

Publish with us

Policies and ethics