Skip to main content

Circadian Clocks and mTOR Signaling

  • Chapter
  • First Online:
  • 1113 Accesses

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

The interest in the delay of aging and age associated pathologies through dietary interventions is growing. Understanding the molecular mechanisms of dietary effects on physiology and metabolism is essential to develop rational strategies for dietary interventions. Circadian clock and mTOR signaling pathway play critical role in the organism/diet interaction and regulation of metabolism. Circadian clock generates rhythms in physiology, known as circadian rhythms, which are essential for the synchronization of various metabolic processes with periodic feeding (activity)/fasting (sleep) cycles. Clock disruption is associated with the development of multiple pathologies in animal models and increases the risk of diseases in humans. mTOR signaling pathway is a master regulator of a switch between catabolism and anabolism in response to feeding. mTOR pathway is deregulated in many diseases such as cancer and diabetes and contributes to development of these pathologies. Both systems, the circadian clock and mTOR pathway, have been implicated in the control of aging in different organisms. Recently several groups reported on the existence of the crosstalk between the circadian clock and mTOR signaling pathway. Here we will discuss the role of this crosstalk in aging.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott SM, Reid KJ, Zee PC (2015) Circadian rhythm sleep-wake disorders. Psychiatr Clin North Am 38(4):805–823

    Article  PubMed  Google Scholar 

  • Antoch MP et al (2008) Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle 7(9):1197–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asher G, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134(2):317–328

    Article  CAS  PubMed  Google Scholar 

  • Bar-Peled L, Chantranupong L, Cherniack AD et al (2013) A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340(6136):1100–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell-Pedersen D et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6(7):544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagosklonny MV (2011) Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 3(12):1130–1141

    Article  CAS  Google Scholar 

  • Brown SA (2014) Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 141(16):3105–3111

    Article  CAS  PubMed  Google Scholar 

  • Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36(6):932–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cafferkey R et al (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13(10):6012–6023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao R et al (2008) Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Mol Cell Neurosci 38(3):312–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao R et al (2010) Mammalian target of rapamycin signaling modulates photic entrainment of the suprachiasmatic circadian clock. J Neurosci 30(18):6302–6314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao R et al (2011) Circadian regulation of mTOR signaling in the mouse SCN. Neuroscience 5(181):79–88

    Article  Google Scholar 

  • Cao R et al (2013) Translational control of entrainment and synchrony of the suprachiasmatic circadian clock by mTOR/4E-BP1 signaling. Neuron 79(4):712–724

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Sarbassov Dos D (2011) The mTOR (mammalian target of rapamycin) kinase maintains integrity of mTOR complex 2. J Biol Chem 286(46):40386–40394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WD, Wang CY (2014) The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun 451(3):408–414

    Article  CAS  PubMed  Google Scholar 

  • Colman RJ et al (2014) Caloric restriction delays disease onset and mortality in rhesus monkeys. Nat Commun 1(5):3557

    Google Scholar 

  • Cornu M (2015) mTOR signaling in liver disease (chapter 22). In: Signaling pathways in liver diseases. 28 Aug 2015

    Google Scholar 

  • Davis S, Mirick DK, Stevens RG (2001) Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst 93(20):1557–1562

    Article  CAS  PubMed  Google Scholar 

  • de Baaij JH, Hoenderop JG, Bindels RJ (2015) Magnesium in man: implications for health and disease. Physiol Rev 95(1):1–46

    Article  PubMed  Google Scholar 

  • Drägert K et al (2015) Deletion of Rictor in brain and fat alters peripheral clock gene expression and increases blood pressure. Hypertension 66(2):332–339

    Article  PubMed  Google Scholar 

  • Edery I (2000) Circadian rhythms in a nutshell. Physiol Genom 3(2):59–74

    CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292(5515):288–290

    Article  CAS  PubMed  Google Scholar 

  • Facchinetti V et al (2008) The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 27(14):1932–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feeney KA et al (2016) Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 532(7599):375–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrell JM, Chiang JY (2015) Circadian rhythms in liver metabolism and disease. Acta Pharm Sin B 5(2):113–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca Costa SS, Ripperger JA (2015) Impact of the circadian clock on the aging process. Front Neurol 6:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Fujino Y, Iso H, Tamakoshi A, Inaba Y, Koizumi A, Kubo T et al (2006) A prospective cohort study of shift work and risk of ischemic heart disease in Japanese male workers. Am J Epidemiol 164(2):128–135

    Article  PubMed  Google Scholar 

  • Gotter AL, Emanuel BS (2007) Mammalian TIMELESS and Tipin are evolutionarily conserved replication fork-associated factors. J Mol Biol 366:36–52

    Article  CAS  PubMed  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008a) The meter of metabolism. Cell 134(5):728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green CB, Takahashi JS, Bass J (2008b) The meter of metabolism. Cell 134:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guertin DA et al (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 11(6):859–871

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara A et al (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15(5):725–738

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, SuzukiMigishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  • Harms E, Kivimae S, Young MW, Saez L (2004) Posttranscriptional and posttranslational regulation of clock genes. J Biol Rhythms 19(5):361–373

    Article  CAS  PubMed  Google Scholar 

  • He L et al (2016) Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism. Am J Physiol Heart Circ Physiol 310(11):H1520–H1532

    Article  PubMed  PubMed Central  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253(5022):905–909

    Article  CAS  PubMed  Google Scholar 

  • Hsieh AC et al (2012) The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 485(7396):55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS (2015) Modulating mTOR in aging and health. Interdiscip Top Gerontol 40:107–127

    Article  PubMed  Google Scholar 

  • Kaeberlein M et al (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310(5751):1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kapahi P et al (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14(10):885–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katewa SD et al (2016) Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab 23(1):143–154

    Article  CAS  PubMed  Google Scholar 

  • Kenerson HL, Yeh MM, Yeung RS (2011) Tuberous sclerosis complex-1 deficiency attenuates diet-induced hepatic lipid accumulation. PLoS ONE 6:e18075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khapre RV, Samsa WE, Kondratov RV (2010) Circadian regulation of cell cycle: molecular connections between aging and the circadian clock. Ann Med 42(6):404–415

    Article  CAS  PubMed  Google Scholar 

  • Khapre RV et al (2014a) Metabolic clock generates nutrient anticipation rhythms in mTOR signaling. Aging (Albany NY) 6(8):675–689

    Article  CAS  Google Scholar 

  • Khapre RV et al (2014b) BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging (Albany NY) 6(1):48–57

    Article  CAS  Google Scholar 

  • Kim JE, Chen J (2004) Regulation of peroxisome proliferatoractivated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53:2748–2756

    Article  CAS  PubMed  Google Scholar 

  • Kim JS et al (2015) Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 30(5):9502

    Article  Google Scholar 

  • Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15:15

    Article  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  • Kondratov RV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20(14):1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratov RV, Antoch MP (2007a) Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 17:311–317

    Article  CAS  PubMed  Google Scholar 

  • Kondratov RV, Antoch MP (2007b) Circadian proteins in the regulation of cell cycle and genotoxic stress responses. Trends Cell Biol 17(7):311–317

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N et al (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging (Albany NY) 1(11):937–948

    Article  CAS  Google Scholar 

  • Krishnan N et al (2012) Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 45(3):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Langmesser S, Albrecht U (2006) Life time-circadian clocks, mitochondria and metabolism. Chronobiol Int 23(1–2):151–157

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2009a) mTOR signaling at a glance. J Cell Sci 122(Pt 20):3589–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2009b) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipton et al (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161(5):1138–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín C, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M, Wang J, Ives HE, Pearce D (2011) mSIN1 protein mediates SGK1 protein interaction with mTORC2 protein complex and is required for selective activation of the epithelial sodium channel. J Biol Chem 286(35):30647–30654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahoney SJ, Dempsey JM, Blenis J (2009) Cell signaling in protein synthesis ribosome biogenesis and translation initiation and elongation. Prog Mol Biol Transl Sci 90:53–107

    Article  CAS  PubMed  Google Scholar 

  • Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J (2013) Beyond control of protein translation: what we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). Biochim Biophys Acta 1834(7):1434–1448

    Article  CAS  PubMed  Google Scholar 

  • Marcheva B, Ramsey KM, Peek CB, Affinati A, Maury E, Bass J (2013) Circadian clocks and metabolism. Handb Exp Pharmacol 217:127–155

    Article  CAS  Google Scholar 

  • Mattison JA et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489(7415):318–321

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22(2):132–139

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134(2):329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh WJ, Jacinto E (2011) mTOR complex 2 signaling and functions. Cell Cycle 10(14):2305–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel SA et al (2016) Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J 30(4):1634–1642

    Article  CAS  PubMed  Google Scholar 

  • Pearce LR et al (2007) Identification of protor as a novel rictor-binding component of mTOR complex-2. Biochem J 405(3):513–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearce LR et al (2011) Protor-1 is required for efficient mTORC2-mediated activation of SGK1 in the kidney. Biochem J 436(1):169–179

    Article  CAS  PubMed  Google Scholar 

  • Peterson TR et al (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137(5):873–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN (2008) Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8:399–410

    Article  CAS  PubMed  Google Scholar 

  • Powers RW 3rd et al (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20(2):174–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  • Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard-Bulteau H, Vignaud A, Baas D, Defour A et al (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187:859–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK (2012) TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab 15:713–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hagiwara A, Cornu M, Cybulski N, Polak P, Betz C, Trapani F, Terracciano L, Heim MH, Rü egg, MA, Hall MN (2012) Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab 15(5):725–38

    Google Scholar 

  • Sahar S, Sassone-Corsi P (2009) Metabolism and cancer: the circadian clock connection. Nat Rev Cancer 9(12):886–896

    Article  CAS  PubMed  Google Scholar 

  • Sancar A et al (2010) Circadian clock control of the cellular response to DNA damage. FEBS Lett 584(12):2618–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  CAS  PubMed  Google Scholar 

  • Sarbassov DD et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168 Epub 2006 Apr 6

    Article  CAS  PubMed  Google Scholar 

  • Schmidt C, Collette F, Cajochen C, Peigneux P (2007) A time to think: circadian rhythms in human cognition. Cogn Neuropsychol 24:755–789

    Article  PubMed  Google Scholar 

  • Selman C et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326(5949):140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soukas AA et al (2009) Rictor/tor2 regulates fat metabolism, feeding, growth and lifespan in C. elegans. Genes Dev 23(4):496–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoreen CC et al (2012) A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485(7396):109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth ML, Sigmond T, Borsos E, Barna J, Erdelyi P, Takacs-Vellai K, Orosz L, Kovacs AL, Csikos G, Sass M et al (2008) Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4(3):330–338

    Article  CAS  PubMed  Google Scholar 

  • Um SH et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  CAS  PubMed  Google Scholar 

  • Videnovic A, Zee PC (2015) Consequences of circadian disruption on neurologic health. Sleep Med Clin 10(4):469–480

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfson RL et al (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351(6268):43–48

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Yan G, Lai Y, Jiang Y (2012a) The TOR complex 1 is a direct target of Rho1 GTPase. Mol Cell 45(6):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan G, Lai Y, Jiang Y (2012b) TOR under stress: targeting TORC1 by Rho1 GTPase. Cell Cycle 11(18):3384–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang G et al (2015) A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 12(6):937–943

    Article  CAS  PubMed  Google Scholar 

  • Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH et al (2011) Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 14:21–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang et al (2014) Liver clock protein BMAL1 promotes de novo lipogenesis through insulin-mTORC2-AKT signaling. J Biol Chem 289(37):25925–25935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinzalla V, Stracka D, Oppliger W, Hall MN (2011) Activation of mTORC2 by association with the ribosome. Cell 144(5):757–768

    Article  CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman V. Kondratov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, R., Kondratov, R.V. (2017). Circadian Clocks and mTOR Signaling. In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_9

Download citation

Publish with us

Policies and ethics