Skip to main content

The Circadian System and Aging of Drosophila

  • Chapter
  • First Online:

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

Circadian clocks generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The core clock mechanism is cell-autonomous and consists of molecular negative feedback loops that turn over with an endogenous circa 24 h period. While daily oscillations in the activity of clock genes and proteins are well understood in young fruit flies Drosophila melanogaster, much less is known about how the clock mechanism changes during organismal aging. Emerging data suggest that aging is associated with reduced expression of some core clock genes in peripheral head clocks, while a similar reduction may not occur in central clock neurons regulating behavioral rhythms. Clock-controlled processes also change with age. Similar as in humans, rest/activity rhythms tend to weaken with age in fruit flies, suggesting conservation of aging-related circadian impairments. The importance of circadian clocks for healthy aging is supported by observations that their genetic or environmental disruption is associated with reduced healthspan and lifespan . For example, arrhythmia caused by mutations in core clock genes lead to symptoms of accelerated aging in both flies and mammals, including neurodegenerative phenotypes. Despite the wealth of descriptive data, the mechanisms by which functional clocks confer healthspan and lifespan benefits are poorly understood. Recent studies in Drosophila discussed here are beginning to unravel causative relationships between circadian system and aging. They also suggest that clocks may be involved in inducing rhythmic expression of specific genes late in life in response to age-related increase in oxidative stress. The goal of this chapter is to summarize modest insights that were so far made into links between circadian system and aging and to illuminate the power of Drosophila for future mechanistic research in this important area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali AA, Schwarz-Herzke B, Stahr A, Prozorovski T, Aktas O, von Gall C (2015) Premature aging of the hippocampal neurogenic niche in adult Bmal1-deficient mice. Aging (Albany NY)

    Google Scholar 

  • Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937

    Article  CAS  PubMed  Google Scholar 

  • Beaver LM, Klichko VI, Chow ES, Kotwica-Rolinska J, Williamson M, Orr WC, Radyuk SN, Giebultowicz JM (2012) Circadian regulation of glutathione levels and biosynthesis in Drosophila melanogaster. PLoS ONE 7:e50454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop NA, Guarente L (2007) Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat Rev Genet 8(11):835–844

    Article  CAS  PubMed  Google Scholar 

  • Botella JA, Ulschmid JK, Gruenewald C, Moehle C, Kretzschmar D, Becker K, Schneuwly S (2004) The Drosophila carbonyl reductase sniffer prevents oxidative stress-induced neurodegeneration. Curr Biol 14(9):782–786

    Article  CAS  PubMed  Google Scholar 

  • Brown SA (2014) Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 141(16):3105–3111

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee A, Hardin PE (2010) Time to taste: circadian clock function in the Drosophila gustatory system. Fly (Austin) 4(4):283–287

    Article  CAS  Google Scholar 

  • Chen KF, Possidente B, Lomas DA, Crowther DC (2014) The central molecular clock is robust in the face of behavioural arrhythmia in a Drosophila model of Alzheimer’s disease. Disease Models Mech 7(4):445–458

    Article  CAS  Google Scholar 

  • Chen CY, Logan RW, Ma TZ, Lewis DA, Tseng GC, Sibille E, McClung CA (2016) Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. P Natl Acad Sci U S A 113(1):206–211

    Article  CAS  Google Scholar 

  • Cheng Y, Hardin PE (1998) Drosophila photoreceptors contain an autonomous circadian oscillator that can function without period mRNA cycling. J Neurosci 18(2):741–750

    CAS  PubMed  Google Scholar 

  • Chow ES, Long DM, Giebultowicz JM (2016) Circadian rhythm in mRNA expression of the glutathione synthesis gene Gclc is controlled by peripheral glial clocks in Drosophila melanogaster. Physiol Entomol 41:369–377

    Article  CAS  PubMed  Google Scholar 

  • Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143(5):813–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erion R, King AN, Wu G, Hogenesch JB, Sehgal A (2016) Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. eLife 5

    Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med 30(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  • Frisch B, Hardin PE, Hamblen-Coyle MJ, Rosbash M, Hall JC (1994) A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous system. Neuron 12:555–570

    Article  CAS  PubMed  Google Scholar 

  • Giebultowicz JM (2001) Peripheral clocks and their role in circadian timing: insights from insects. Phil Trans R Soc B 356:1791–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giebultowicz JM (2004) Multiple oscillators. In: Sehgal A (ed) Molecular biology of circadian rhythms. Wiley, Hoboken, pp 213–230

    Google Scholar 

  • Giebultowicz JM, Hege D (1997) Circadian clock in malpighian tubules. Nature 386:664

    Article  CAS  PubMed  Google Scholar 

  • Giebultowicz JM, Long DM (2015) Ageing and circadian rhythms. Curr Opin Insect Sci 7:82–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Giebultowicz JM, Riemann JG, Raina AK, Ridgway RL (1989) Circadian system controlling release of sperm in the insect testes. Science 245:1098–1100

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 347(6227):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardin PE (2011) Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74:141–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardin PE, Panda S (2013) Circadian timekeeping and output mechanisms in animals. Curr Opin Neurobiol 23(5):724–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfrich-Forster C (2004) The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(8):601–613

    Article  PubMed  Google Scholar 

  • Helfrich-Forster C (2005) Neurobiology of the fruit fly’s circadian clock. Genes Brain Behav 4(2):65–76

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC, Lu S, Kume K, Yin JC, Yang Z, Sehgal A (2003) Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18(1):12–25

    Article  CAS  PubMed  Google Scholar 

  • Hooven LA, Sherman KA, Butcher S, Giebultowicz JM (2009) Does the clock make the poison? Circadian variation in response to pesticides. PLoS ONE 4(7):e6469

    Article  PubMed  PubMed Central  Google Scholar 

  • Hughes ME, Grant GR, Paquin C, Qian J, Nitabach MN (2012) Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res 22(7):1266–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanchenko M, Stanewsky R, Giebultowicz JM (2001) Circadian photoreception in Drosophila: functions of cryptochrome in peripheral and central clocks. J Biol Rhythms 16:205–215

    Article  CAS  PubMed  Google Scholar 

  • Karpowicz P, Zhang Y, Hogenesch JB, Emery P, Perrimon N (2013) The circadian clock gates the intestinal stem cell regenerative state. Cell Rep 3(4):996–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katewa SD, Akagi K, Bose N, Rakshit K, Camarella T, Zheng X, Hall D, Davis S, Nelson CS, Brem RB, Ramanathan A, Sehgal A, Giebultowicz JM, Kapahi P (2016) Peripheral circadian clocks mediate dietary restriction-dependent changes in lifespan and fat metabolism in Drosophila. Cell Metab 23(1):143–154

    Article  CAS  PubMed  Google Scholar 

  • Keegan KP, Pradhan S, Wang JP, Allada R (2007) Meta-analysis of Drosophila circadian microarray studies identifies a novel set of rhythmically expressed genes. PLoS Comp Biol 3(11):e208

    Google Scholar 

  • Klarsfeld A, Rouyer F (1998) Effects of circadian mutations and LD periodicity on the life span of Drosophila melanogaster. J Biol Rhythms 13(6):471–478

    Article  CAS  PubMed  Google Scholar 

  • Klichko VI, Chow ES, Kotwica-Rolinska J, Orr WC, Giebultowicz JM, Radyuk SN (2015) Aging alters circadian regulation of redox in Drosophila. Frontiers Genet 6:83

    Article  Google Scholar 

  • Koh K, Evans JM, Hendricks JC, Sehgal A (2006) A Drosophila model for age-associated changes in sleep: wake cycles. Proc Natl Acad Sci U S A 103(37):13843–13847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 20(14):1868–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondratova AA, Kondratov RV (2012) The circadian clock and pathology of the ageing brain. Nat Rev Neurosci 13(5):325–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A 68:2112–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretzschmar D, Hasan G, Sharma S, Heisenberg M, Benzer S (1997) The swiss cheese mutant causes glial hyperwrapping and brain degeneration in Drosophila. J Neurosci 17(19):7425–7432

    CAS  PubMed  Google Scholar 

  • Krishnan B, Levine JD, Lynch MK, Dowse HB, Funes P, Hall JC, Hardin PE, Dryer SE (2001) A new role for cryptochrome in a Drosophila circadian oscillator. Nature 411(6835):313–317

    Article  CAS  PubMed  Google Scholar 

  • Krishnan N, Kretzschmar D, Rakshit K, Chow E, Giebultowicz J (2009) The circadian clock gene period extends healthspan in aging Drosophila melanogaster. Aging 1(11):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz JM (2012) Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 45(3):1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Kuintzle RC, Chow ES, Westby TN, Gvakharia BO, Giebultowicz JM, Hendrix DA (2017) Aging induces de novo rhythmic expression of oxidative stress-responsive genes. Nat Commun 8:14529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kula-Eversole E, Nagoshi E, Shang Y, Rodriguez J, Allada R, Rosbash M (2009) Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 107(30):13497–13502

    Article  Google Scholar 

  • Kumar S, Mohan A, Sharma VK (2005) Circadian dysfunction reduces lifespan in Drosophila melanogaster. Chronobiol Int 22(4):641–653

    Article  PubMed  Google Scholar 

  • Long DM, Blake MR, Dutta S, Holbrook SD, Kotwica-Rolinska J, Kretzschmar D, Giebultowicz JM (2014) Relationships between the circadian system and Alzheimer’s disease-like symptoms in Drosophila. PLoS ONE 9(8):e106068

    Article  PubMed  PubMed Central  Google Scholar 

  • Longo VD, Panda S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23(6):1048–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowrey PL, Takahashi JS (2011) Genetics of circadian rhythms in mammalian model organisms. Adv Genet 74:175–230

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luchak JM, Prabhudesai L, Sohal RS, Radyuk SN, Orr WC (2007) Modulating longevity in Drosophila by over- and underexpression of glutamate-cysteine ligase. Ann N Y Acad Sci 1119:260–273

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Chen WF, Yue Z, Chen D, Sowcik M, Sehgal A, Zheng X (2012) Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell 11(3):428–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metaxakis A, Tain LS, Gronke S, Hendrich O, Hinze Y, Birras U, Partridge L (2014) Lowered insulin signalling ameliorates age-related sleep fragmentation in Drosophila. PLoS Biol 12(4):e1001824

    Article  PubMed  PubMed Central  Google Scholar 

  • Musiek ES (2015) Circadian clock disruption in neurodegenerative diseases: cause and effect? Frontiers Pharmacol 6:29

    Article  Google Scholar 

  • Nakamura TJ, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD (2012) Age-related decline in circadian output. J Neurosci 31(28):10201–10205

    Article  Google Scholar 

  • Nakamura TJ, Nakamura W, Tokuda IT, Ishikawa T, Kudo T, Colwell CS, Block GD (2015) Age-related changes in the circadian system unmasked by constant conditions (1,2,3). eNeuro 2(4)

    Google Scholar 

  • Ng FS, Tangredi MM, Jackson FR (2011) Glial cells physiologically modulate clock neurons and circadian behavior in a calcium-dependent manner. Curr Biol 21(8):625–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitabach MN, Taghert PH (2008) Organization of the Drosophila circadian control circuit. Curr Biol 18(2):R84–R93

    Article  CAS  PubMed  Google Scholar 

  • Pittendrigh CS (1960) Circadian rhythms and circadian organization of the living systems. Cold Spring Harbor Symp Quant Biol 25:159–182

    Article  CAS  PubMed  Google Scholar 

  • Rakshit K, Giebultowicz JM (2013) Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging Cell 12:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakshit K, Krishnan N, Guzik EM, Pyza E, Giebultowicz JM (2012) Effects of aging on the molecular circadian oscillations in Drosophila. Chronobiol Int 29(1):1–10

    Article  Google Scholar 

  • Reddy AB, O’Neill JS (2010) Healthy clocks, healthy body, healthy mind. Trends Cell Biol 20(1):36–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Rezaval C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernandez MP, Beckwith EJ, Aranovich EJ, Sabio y Garcia CA, Ceriani MF (2008) A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One 3(10):e3332

    Google Scholar 

  • Rodriguez J, Tang CH, Khodor YL, Vodala S, Menet JS, Rosbash M (2013) Nascent-seq analysis of Drosophila cycling gene expression. Proc Natl Acad Sci U S A 110(4):E275–E284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seay DJ, Thummel CS (2011) The circadian clock, light, and cryptochrome regulate feeding and metabolism in Drosophila. J Biol Rhythms 26(6):497–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehadova H, Glaser FT, Gentile C, Simoni A, Giesecke A, Albert JT, Stanewsky R (2009) Temperature entrainment of Drosophila’s circadian clock involves the gene nocte and signaling from peripheral sensory tissues to the brain. Neuron 64(2):251–266

    Article  CAS  PubMed  Google Scholar 

  • Shaw P (2003) Awakening to the behavioral analysis of sleep in Drosophila. J Biol Rhythms 18(1):4–11

    Article  PubMed  Google Scholar 

  • Tanoue S, Krishnan P, Krishnan B, Dryer SE, Hardin PE (2004) Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr Biol 14(8):638–649

    Article  CAS  PubMed  Google Scholar 

  • Umezaki Y, Yoshii T, Kawaguchi T, Helfrich-Forster C, Tomioka K (2012) Pigment-dispersing factor is involved in age-dependent rhythm changes in Drosophila melanogaster. J Biol Rhythms 27(6):423–432

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Karpac J, Jasper H (2014) Promoting longevity by maintaining metabolic and proliferative homeostasis. J Exp Biol 217(Pt 1):109–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Zheng X, Sehgal A (2008) Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8(4):289–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13(6):639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu EA, Weaver DR (2011) Disrupting the circadian clock: gene-specific effects on aging, cancer, and other phenotypes. Aging (Albany NY) 3(5):479–493

    Article  CAS  Google Scholar 

  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB (2014) A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc Natl Acad Sci U S A 111(45):16219–16224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Sehgal A (2010) AKT and TOR signaling set the pace of the circadian pacemaker. Curr Biol 20(13):1203–1208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author thanks Eileen Chow for help with figures and reading of the manuscript as well as Dani Long for reading of the manuscript. Author’s research reported in this publication was supported by the National Institute on Aging of the National Institutes of Health under award number R01 AG045830 and R21AG052950 to JMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadwiga M. Giebultowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Giebultowicz, J.M. (2017). The Circadian System and Aging of Drosophila . In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_6

Download citation

Publish with us

Policies and ethics