Skip to main content

Aging and the Circadian Control of the Gastrointestinal System: From the Brain to the Gut Microbiome (and Back)

  • Chapter
  • First Online:
Circadian Rhythms and Their Impact on Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

The effect of aging on circadian clocks within the gastrointestinal system and the role played by melatonin and circadian clocks in the process of gastrointestinal aging is reviewed. Although we know quite a lot about the physiological and molecular mechanisms of circadian clocks in mammals, we know very little about the mechanisms of food-entrainable rhythmicity. The role played by the pineal hormone melatonin has been posited as a key to understanding aging and clock function, but the evidence is incomplete. Finally, new data about aging and circadian control of the intestinal microbiome is placed in the context of the circadian system as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Circadian rhythms in isolated brain regions. J Neurosci 22(1):350–356

    CAS  PubMed  Google Scholar 

  • Aguilar-Roblero R, García-Hernández F, Aguilar R, Arankowsky-Sandoval G, Drucker-Colín R (1986) Suprachiasmatic nucleus transplants function as an endogenous oscillator only in constant darkness. Neurosci Lett 69(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Albrecht U (2004) The mammalian circadian clock: a network of gene expression. Front Biosci 9:48–55

    Article  CAS  PubMed  Google Scholar 

  • Anand R, Song Y, Garg S, Girotra M, Sinha A, Sivaraman A, Phillips L, Dutta SK (2017) Effect of aging on the composition of fecal microbiota in donors for FMT and its impact on clinical outcomes. Dig Dis Sci. doi:10.1007/s10620-017-4449-6

    Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6(7):544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bischoff SC (2016) Microbiota and aging. Curr Opin Clin Nutr Metab Care 19(1):26–30

    Article  CAS  PubMed  Google Scholar 

  • Bitar K, Greenwood-Van Meerveld B, Saad R, Wiley JW (2011) Aging and gastrointestinal neuromuscular function: insights from within and outside the gut. Neurogastroenterol Motil 23(6):490–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bubenik GA (1980) Localization of melatonin in the digestive tract of the rat. Effect of maturation, diurnal variation, melatonin treatment and pinealectomy. Horm Res 12(6):313–323

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA (2002) Gastrointestinal melatonin: localization, function, and clinical relevance. Dig Dis Sci 47(10):2336–2348

    Article  CAS  PubMed  Google Scholar 

  • Bubenik GA, Konturek SJ (2011) Melatonin and aging: prospects for human treatment. J Physiol Pharmacol 62(1):13–19

    CAS  PubMed  Google Scholar 

  • Cassone VM, Stephan FK (2002) Central and peripheral regulation of feeding and nutrition by the mammalian circadian clock: implications for nutrition during manned space flight. Nutrition 18(10):814–819

    Article  PubMed  Google Scholar 

  • Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Claustrat F, Fournier I, Geelen G, Brun J, Corman B, Claustrat B (2005) Aging and circadian clock gene expression in peripheral tissues in rats. Pathol Biol (Paris) 53(5):257–260

    Article  CAS  Google Scholar 

  • Comperatore CA, Stephan FK (1987) Entrainment of duodenal activity to periodic feeding. J Biol Rhythms 2(3):227–242

    Article  CAS  PubMed  Google Scholar 

  • Conley MN, Wong CP, Duyck KM, Hord N, Ho E, Sharpton TJ (2016) Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ. 4:e1854. doi:10.7717/peerj.1854

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson AJ, Stephan FK (1999) Plasma glucagon, glucose, insulin, and motilin in rats anticipating daily meals. Physiol Behav 66(2):309–315

    Article  CAS  PubMed  Google Scholar 

  • Davidson AJ, Cappendijk SL, Stephan FK (2000) Feeding-entrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am J Physiol Regul Integr Comp Physiol 278(5):R1296–R1304

    CAS  PubMed  Google Scholar 

  • Davidson AJ, Poole AS, Yamazaki S, Menaker M (2003) Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav 2(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Davidson AJ, Yamazaki S, Arble DM, Menaker M, Block GD (2008) Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol Aging 29(3):471–477

    Article  PubMed  Google Scholar 

  • Diss LB, Robinson SD, Wu Y, Fidalgo S, Yeoman MS, Patel BA (2013) Age-related changes in melatonin release in the murine distal colon. ACS Chem Neurosci 4(5):879–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Earnest DJ, Liang FQ, Ratcliff M, Cassone VM (1999) Immortal time: circadian clock properties of rat suprachiasmatic cell lines. Science 283(5402):693–695

    Article  CAS  PubMed  Google Scholar 

  • Escobar C, Cailotto C, Angeles-Castellanos M, Delgado RS, Buijs RM (2009) Peripheral oscillators: the driving force for food-anticipatory activity. Eur J Neurosci 30(9):1665–1675

    Article  PubMed  Google Scholar 

  • Froy O, Miskin R (2007) The interrelations among feeding, circadian rhythms and ageing. Prog Neurobiol 82(3):142–150

    Article  PubMed  Google Scholar 

  • Fuller PM, Lu J, Saper CB (2008) Differential rescue of light- and food-entrainable circadian rhythms. Science 320(5879):1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geokas MC, Haverback BJ (1969) The aging gastrointestinal tract. Am J Surg 117(6):881–892

    Article  CAS  PubMed  Google Scholar 

  • Geokas MC, Conteas CN, Majumbar AP (1985) The aging gastrointestinal tract, liver and pancreas. Clin Geriatr Med 1:177–205

    Google Scholar 

  • Gillette MU, Tischkau SA (1999) Suprachiasmatic nucleus: the brain’s circadian clock. Recent Prog Horm Res 54:33–58

    CAS  PubMed  Google Scholar 

  • Gooley JJ, Schomer A, Saper CB (2006) The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat Neurosci 9(3):398–407

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA (2000) The human circadian clock and aging. Chronobiol Int 17(3):245–259

    Article  CAS  PubMed  Google Scholar 

  • Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5(1):33–51

    Google Scholar 

  • Hoogerwerf WA (2010) Role of clock genes in gastrointestinal motility. Am J Physiol Gastrointest Liver Physiol 299(3):G549–G555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogerwerf WA, Hellmich HL, Cornélissen G, Halberg F, Shahinian VB, Bostwick J, Savidge TC, Cassone VM (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133(4):1250–1260

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Sinha M, Conesa A, Luxon BA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Cassone VM (2008) Transcriptional profiling of mRNA expression in the mouse distal colon. Gastroenterology 135(6):2019–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoogerwerf WA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Bartell PA, Cassone VM (2010) Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol 298(2):G143–G150

    Google Scholar 

  • Huether G (1994) Melatonin synthesis in the gastrointestinal tract and the impact of nutritional factors on circulating melatonin. Ann N Y Acad Sci 719:146–158

    Article  CAS  PubMed  Google Scholar 

  • Konturek PC, Brzozowski T, Konturek SJ (2011) Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol 62(2):139–150

    CAS  PubMed  Google Scholar 

  • Kvetnoy IM, Ingel IE, Kvetnaia TV, Malinovskaya NK, Rapoport SI, Raikhlin NT, Trofimov AV, Yuzhakov VV (2002) Gastrointestinal melatonin: cellular identification and biological role. Neuro Endocrinol Lett 23(2):121–132

    CAS  PubMed  Google Scholar 

  • Landry GJ, Simon MM, Webb IC, Mistlberger RE (2006) Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am J Physiol Regul Integr Comp Physiol 290(6):R1527–R1534

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Bushman FD, FitzGerald GA (2014) Time in motion: the molecular clock meets the microbiome. Cell 159(3):469–470

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Bushman FD, FitzGerald GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A 112(33):10479–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malloy JN, Paulose JK, Li Y, Cassone VM (2012) Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators. Am J Physiol Gastrointest Liver Physiol 303(4):G461–G473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123. doi:10.1186/1471-2180-9-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistlberger RE (2011) Neurobiology of food anticipatory circadian rhythms. Physiol Behav 104(4):535–545

    Article  CAS  PubMed  Google Scholar 

  • Mistlberger RE, Yamazaki S, Pendergast JS, Landry GJ, Takumi T, Nakamura W (2008) Comment on “differential rescue of light- and food-entrainable circadian rhythms”. Science 322(5902):675

    Article  PubMed  PubMed Central  Google Scholar 

  • Mistlberger RE, Buijs RM, Challet E, Escobar C, Landry GJ, Kalsbeek A, Pevet P, Shibata S (2009) Food anticipation in Bmal1-/- and AAV-Bmal1 rescued mice: a reply to Fuller et al. J Circadian Rhythms. 7:11. doi:10.1186/1740-3391-7-11

  • Mohawk JA, Green CB, Takahashi JS (2012) Central and peripheral circadian clocks in mammals. Annu Rev Neurosci 35:445–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore RY (2013) The suprachiasmatic nucleus and the circadian timing system. Prog Mol Biol Transl Sci 119:1–28

    Article  PubMed  Google Scholar 

  • Mukherji A, Kobiita A, Ye T, Chambon P (2013) Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153(4):812–827

    Article  CAS  PubMed  Google Scholar 

  • O’Toole PW, Jeffery IB (2015) Gut microbiota and aging. Science 350(6265):1214–1215

    Article  PubMed  Google Scholar 

  • Paulose JK, Cassone VM (2016) The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes 7(5):424–427. doi:10.1080/19490976.2016.1208892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulose JK, Wright JM, Patel AG, Cassone VM (2016) Human gut bacteria are sensitive to melatonin and express endogenous circadian rhythmicity. PLoS ONE 11(1):e0146643. doi:10.1371/journal.pone.0146643

    Article  PubMed  PubMed Central  Google Scholar 

  • Paulose JK, Krishnasamy MP, Cassone VM (2017) Formal properties of the Enterobacter aerogenes circadian clock. Poster session presented at: from cells to clinic. 8th annual circadian biology symposium of the center for circadian biology, 15–17 Feb, San Diego, CA

    Google Scholar 

  • Pendergast JS, Nakamura W, Friday RC, Hatanaka F, Takumi T, Yamazaki S (2009) Robust food anticipatory activity in BMAL1-deficient mice. PLoS ONE 4(3):e4860. doi:10.1371/journal.pone.0004860

    Article  PubMed  PubMed Central  Google Scholar 

  • Pezuk P, Mohawk JA, Yoshikawa T, Sellix MT, Menaker M (2010) Circadian organization is governed by extra-SCN pacemakers. J Biol Rhythms 25(6):432–441

    Article  PubMed  Google Scholar 

  • Polidarová L, Soták M, Sládek M, Pacha J, Sumová A (2009) Temporal gradient in the clock gene and cell-cycle checkpoint kinase Wee1 expression along the gut. Chronobiol Int 26(4):607–620

    Article  PubMed  Google Scholar 

  • Polidarová L, Sládek M, Soták M, Pácha J, Sumová A (2011) Hepatic, duodenal, and colonic circadian clocks differ in their persistence under conditions of constant light and in their entrainment by restricted feeding. Chronobiol Int 28(3):204–215

    Google Scholar 

  • Quay WB (1976) Demonstration of gastrointestinal hydroxyindole-O-methyltransferase activity in vertebrates. IRCS Med Sci 4:563

    CAS  Google Scholar 

  • Raikhlin NT, Kvetnoy IM (1976) Melatonin and enterochromaffine cells. Acta Histochem 55(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Raikhlin NT, Kvetnoy IM, Tolkachev VN (1975) Melatonin may be synthesized in enterochromaffin cells. Nature 255(5506):344–345

    Article  CAS  PubMed  Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1995) The pineal gland and melatonin in relation to aging: a summary of the theories and of the data. Exp Gerontol 30(3–4):199–212

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1997) Aging and oxygen toxicity: relation to changes in melatonin. Age (Omaha). 20(4):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418(6901):935–941

    Article  CAS  PubMed  Google Scholar 

  • Roenneberg T, Merrow M (2003) The network of time: understanding the molecular circadian system. Curr Biol 13(5):R198–R207

    Article  CAS  PubMed  Google Scholar 

  • Rogers MA, Aronoff DM (2016) The influence of non-steroidal anti-inflammatory drugs on the gut microbiome. Clin Microbiol Infect 22(2):178.e1-9. doi:10.1016/j.cmi.2015.10.003

  • Sánchez-Barceló EJ, Mediavilla MD, Tan DX, Reiter RJ (2010) Clinical uses of melatonin: evaluation of human trials. Curr Med Chem 17(19):2070–2095

    Article  PubMed  Google Scholar 

  • Scarbrough K, Losee-Olson S, Wallen EP, Turek FW (1997) Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters. Am J Physiol 272(4 Pt 2):R1219–R1225

    CAS  PubMed  Google Scholar 

  • Sládek M, Rybová M, Jindráková Z, Zemanová Z, Polidarová L, Mrnka L, O’Neill J, Pácha J, Sumová A (2007) Insight into the circadian clock within rat colonic epithelial cells. Gastroenterology 133(4):1240–1249

    Article  PubMed  Google Scholar 

  • Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol 351(2):152–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soderquist F, Hellstrom PM, Cunningham JL (2015) Human gastroenteropancreatic expression of melatonin and its receptors MT1 and MT2. PLoS ONE 10(3):e0120195. doi:10.1371/journal.pone.0120195

    Article  PubMed  PubMed Central  Google Scholar 

  • Soták M, Polidarová L, Musílková J, Hock M, Sumová A, Pácha J (2011) Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol 301(6):G1066–G1074

    Article  PubMed  Google Scholar 

  • Stephan FK (2002) The “other” circadian system: food as a Zeitgeber. J Biol Rhythms 17(4):284–292

    Article  PubMed  Google Scholar 

  • Storch KF, Weitz CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106(16):6808–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC, Abramson L, Katz MN, Korem T, Zmora N, Kuperman Y, Biton I, Gilad S, Harmelin A, Shapiro H, Halpern Z, Segal E, Elinav E (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159(3):514–529

    Article  CAS  PubMed  Google Scholar 

  • Thaiss CA, Levy M, Korem T, Dohnalová L, Shapiro H, Jaitin DA, David E, Winter DR, Gury-BenAri M, Tatirovsky E, Tuganbaev T, Federici S, Zmora N, Zeevi D, Dori-Bachash M, Pevsner-Fischer M, Kartvelishvily E, Brandis A, Harmelin A, Shibolet O, Halpern Z, Honda K, Amit I, Segal E, Elinav E (2016) Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167(6):1495–1510

    Article  CAS  PubMed  Google Scholar 

  • Thomson AB, Keelan M (1986) The aging gut. Can J Physiol Pharmacol 64(1):30–38

    Article  CAS  PubMed  Google Scholar 

  • Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW (1997) Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am J Physiol 273(6 Pt 2):R1957–R1964

    CAS  PubMed  Google Scholar 

  • Verwey M, Amir S (2009) Food-entrainable circadian oscillators in the brain. Eur J Neurosci 30(9):1650–1657

    Article  CAS  PubMed  Google Scholar 

  • Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P, Vitaterna MH, Turek FW, Keshavarzian A (2014) Circadian disorganization alters intestinal microbiota. PLoS ONE 9(5):e97500. doi:10.1371/journal.pone.0097500

    Article  PubMed  PubMed Central  Google Scholar 

  • Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A (2016) The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 40(2):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldhauser F, Kovács J, Reiter E (1998) Age-related changes in melatonin levels in humans and its potential consequences for sleep disorders. Exp Gerontol 33(7–8):759–772

    Article  CAS  PubMed  Google Scholar 

  • Weaver DRT (1998) he suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms 13(2):100–112

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Takahashi JS (2005) Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol 393:288–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci U S A 99(16):10801–10806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS (2004) PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zawilska JB, Nowak JZ (1999) Melatonin: from biochemistry to therapeutic applications. Pol J Pharmacol 51(1):3–23

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Cassone lab is funded by NIH R01 AG045833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent M. Cassone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Cassone, V.M., Paulose, J.K., Harpole, C.E. (2017). Aging and the Circadian Control of the Gastrointestinal System: From the Brain to the Gut Microbiome (and Back). In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_4

Download citation

Publish with us

Policies and ethics