Skip to main content

Circadian Regulation of Bone

  • Chapter
  • First Online:
Circadian Rhythms and Their Impact on Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

The demands of modern society are posing serious effects on our bone health. People are working longer hours, working through the night, getting less sleep, and eating at irregular hours. This is causing more stress and less time to spend outdoors. All of these factors are contributing to circadian disruption “in general” but more importantly to circadian disruption of bone rhythms . Bone metabolism displays circadian variation that is coincident with clock rhythms in bone, with the light/dark cycle and with circulating melatonin levels. Light exposure at night, shift work , and poor quality sleep can lead to weakened bones attributed, in part, to altered clock rhythms in bone and to changes in circulating melatonin and cortisol rhythms in the body. The intent of this review is not to describe bone metabolism “in general” and then to discuss the effect of melatonin in these processes. There are many reviews on this subject matter described throughout the chapter. Rather, the focus of this chapter is to describe clock gene expression and function in bone and how their rhythms impact on osteoblast and osteoclast activity and differentiation and on bone metabolism; and then discuss variables that lead to circadian disruption of bone rhythms and describe ways to maintain healthy bone in a society that continually promotes circadian disruption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amstrup AK, Sikjaer T, Heickendorff L, Mosekilde L, Rejnmark L (2015) Melatonin improves bone mineral density at the femoral neck in postmenopausal women with osteopenia: a randomized controlled trial. J Pineal Res 59:221–229

    Article  CAS  PubMed  Google Scholar 

  • Aoshima H, Kushida K, Takahashi M, Ohishi T, Hoshino H, Suzuki M, Inoue T (1998) Circadian variation of urinary type I collagen crosslinked C-telopeptide and free and peptide-bound forms of pyridinium crosslinks. Bone 22:73–78

    Article  CAS  PubMed  Google Scholar 

  • Azeddine B, Letellier K, da Wang S, Moldovan F, Moreau A (2007) Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis. Clin Orthop Relat Res 462:45–52

    Google Scholar 

  • Bedrosian TA, Fonken LK, Nelson RJ (2016) Endocrine effects of circadian disruption. Annu Rev Physiol 78:109–131

    Article  CAS  PubMed  Google Scholar 

  • Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zalatan F (2005) Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats. Cancer Res 65:11174–11184

    Article  CAS  PubMed  Google Scholar 

  • Bollen AM, Martin MD, Leroux BG, Eyre DR (1995) Circadian variation in urinary excretion of bone collagen cross-links. J Bone Miner Res 10:1885–1890

    Article  CAS  PubMed  Google Scholar 

  • Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA (2014) Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 15:23448–23500

    Article  PubMed  PubMed Central  Google Scholar 

  • Cagnacci A, Soldani R, Yen SS (1995) Melatonin enhances cortisol levels in aged but not young women. Eur J Endocrinol 133:691–695

    Article  CAS  PubMed  Google Scholar 

  • Cagnacci A, Soldani R, Yen SS (1997) Melatonin enhances cortisol levels in aged women: reversible by estrogens. J Pineal Res 22:81–85

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Son GH, Kim K (2011) Circadian rhythm of adrenal glucocorticoid: its regulation and clinical implications. Biochim Biophys Acta 1812:581–591

    Article  CAS  PubMed  Google Scholar 

  • Cole RJ, Kripke DF, Wisbey J, Mason WJ, Gruen W, Hauri PJ, Juarez S (1995) Seasonal variation in human illumination exposure at two different latitudes. J Biol Rhythms 10:324–334

    Article  CAS  PubMed  Google Scholar 

  • Diffey BL (2011) An overview analysis of the time people spend outdoors. Br J Dermatol 164:848–858

    Article  CAS  PubMed  Google Scholar 

  • Eastell R, Calvo MS, Burritt MF, Offord KP, Russell RG, Riggs BL (1992) Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J Clin Endocrinol Metab 74:487–494

    CAS  PubMed  Google Scholar 

  • Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E, Alini M (2011) Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord 12:1

    Article  Google Scholar 

  • Feskanich D, Hankinson SE, Schernhammer ES (2009) Nightshift work and fracture risk: the Nurses’ Health Study. Osteopor Int 20:537–542

    Article  CAS  Google Scholar 

  • Fjelldal PG, Grotmol S, Kryvi H, Gjerdet NR, Taranger GL, Hansen T, Porter MJ, Totland GK (2004) Pinealectomy induces malformation of the spine and reduces the mechanical strength of the vertebrae in Atlantic salmon, Salmo salar. J Pineal Res 36:132–139

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  CAS  PubMed  Google Scholar 

  • Gery S, Virk RK, Chumakov K, Yu A, Koeffler HP (2007) The clock gene Per2 links the circadian system to the estrogen receptor. Oncogene 26:7916–7920

    Article  CAS  PubMed  Google Scholar 

  • Greenspan SL, Dresner-Pollak R, Parker RA, London D, Ferguson L (1997) Diurnal variation of bone mineral turnover in elderly men and women. Calcif Tissue Int 60:419–423

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Xing L, Shi G, Liu Z, Wang X, Qu Z, Wu X, Dong Z, Gao X, Liu G, Yang L, Xu Y (2012) The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ 19:397–405

    Article  CAS  PubMed  Google Scholar 

  • Heshmati HM, Riggs BL, Burritt MF, McAlister CA, Wollan PC, Khosla S (1998) Effects of the circadian variation in serum cortisol on markers of bone turnover and calcium homeostasis in normal postmenopausal women. J Clin Endocrinol Metab 83:751–756

    CAS  PubMed  Google Scholar 

  • Hubert M, Dumont M, Paquet J (1998) Seasonal and diurnal patterns of human illumination under natural conditions. Chronobiol Int 15:59–70

    Article  Google Scholar 

  • Iguichi H, Kato KI, Ibayashi H (1982) Age-dependent reduction in serum melatonin concentrations in healthy human subjects. J Clin Endocrinol Metab 55:27–29

    Article  CAS  PubMed  Google Scholar 

  • Inouye S-I, Kawamura H (1979) Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc Natl Acad Sci 76:5962–5966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishida A, Mutoh T, Ueyama T, Bando H, Masubuchi S, Nakahara D, Tsujimoto G, Okamura H (2005) Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab 2:297–307

    Article  CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Huang W, Reiter RJ, Ahmad N (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49:60–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kennaway DJ, Voultsios A, Varcoe TJ, Moyer RW (2002) Melatonin in mice: rhythms, response to light, adrenergic stimulation, and metabolism. Am J Physiol Regul Integr Comp Physiol 282:R358–R365

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Choi YJ, Chung Y-S (2013) Other than daytime working is associated with lower bone mineral density: the Korea National Health and Nutrition Examination Survey 2009. Calcif Tissue Int 93:495–501

    Article  CAS  PubMed  Google Scholar 

  • Komoto S, Kondo H, Fukuta O, Togari A (2012) Comparison of β-adrenergic and glucocorticoid signaling on clock gene and osteoblast-related gene expressions in human osteoblast. Chronobiol Int 29:66–74

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Togari A (2015) Circadian regulation of bone metabolism by β-adrenergic signaling, glucocorticoids, and clock genes. J Oral Biosci 57:9–13

    Article  Google Scholar 

  • Kono H, Machida M, Saito M, Nishiwaki Y, Kato H, Hosogane N, Chiba K, Miyamoto T, Matsumoto M, Toyama Y (2011) Mechanism of osteoporosis in adolescent idiopathic scoliosis: experimental scoliosis in pinealectomized chickens. J Pineal Res 51:387–393

    Article  CAS  PubMed  Google Scholar 

  • Kotlarczyk MP, Lassila HC, O’Neil CK, D’Amico F, Enderby LT, Witt-Enderby PA, Balk JL (2012) Melatonin osteoporosis prevention study (MOPS): a randomized, double-blind, placebo-controlled study examining the effects of melatonin on bone health and quality of life in perimenopausal women. J Pineal Res 52:414–426

    Article  CAS  PubMed  Google Scholar 

  • Koyama H, Nakade O, Takada Y, Kaku T, Lau KH (2002) Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res 17:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Lesniewska B, Nowak M, Nussdorfer GG, Malendowicz LK (1990) Sex-dependent effect of melatonin on the secretory activity of rat and hamster adrenal gland in vitro. Life Sci 47:241–245

    Article  CAS  PubMed  Google Scholar 

  • Lockley SW (2007) Visual impairment and circadiam rhythm disorders. Dialogues Clin Neurosci 9:301–314

    PubMed  PubMed Central  Google Scholar 

  • Machida M, Dubousset J, Imamura Y, Iwaya T, Yamada T, Kimura J (1995) Role of melatonin deficiency in the development of scoliosis in pinealectomised chickens. J Bone Joint Surg Br 77:134–138

    CAS  PubMed  Google Scholar 

  • Maria S, Witt-Enderby PA (2014) Melatonin effects on bone: potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res 56:115–125

    Article  CAS  PubMed  Google Scholar 

  • Maronde E, Schilling AF, Seitz S, Schinke T, Schmutz I, van der Horst G, Amling M, Albrecht U (2010) The clock genes Period 2 and Cryptochrome 2 differentially balance bone formation. PLoS ONE 5:e11527

    Article  PubMed  PubMed Central  Google Scholar 

  • Min H-Y, Kim K-M, Wee G, Kim E-J, Jang W-G (2016) Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci 162:41

    Google Scholar 

  • Moreau A, da Wang S, Forget S, Azeddine B, Angeloni D, Fraschini F, Labelle H, Poitras B, Rivard CH, Grimard G (2004) Melatonin signaling dysfunction in adolescent idiopathic scoliosis. Spine 29:1772–1781

    Google Scholar 

  • Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological, epidemiological, and ecological consequences. J Pineal Res 43:215–224

    Article  CAS  PubMed  Google Scholar 

  • Nielsen HK, Laurberg P, Brixen K, Mosekilde L (1991) Relations between diurnal variations in serum osteocalcin, cortisol, parathyroid hormone, and ionized calcium in normal individuals. Acta Endocrinol 124:391–398

    CAS  PubMed  Google Scholar 

  • Novakova M, Nevsimalova S, Prihodova I, Sladek M, Sumova A (2012) Alteration of the circadian clock in children with Smith-Magenis syndrome. J Clin Endocrinol Metab 97:E312–E318

    Article  CAS  PubMed  Google Scholar 

  • Ogle TF, Kitay JI (1978) In vitro effects of melatonin and serotonin on adrenal steroidogenesis. Proc Soc Exp Biol Med 157:103–105

    Article  CAS  PubMed  Google Scholar 

  • Ohayon MM, Milesi C (2016) Artificial outdoor nighttime lights associate with altered sleep behavior in the American general population. Sleep 39:1311

    Google Scholar 

  • Oishi K, Amagai N, Shirai H, Kadota K, Ohkura N, Ishida N (2005) Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res 12:191–202

    Article  CAS  PubMed  Google Scholar 

  • Oliveri B, Pellegrini GG, di Gregorio S, Wittich A, Cardinali DP, Zeni SN (2008) Daily rhythm in bone resorption in humans: preliminary observations on the effect of hypoparathyroidism or blindness. Biol Rhythm Res 39:13–19

    Article  CAS  Google Scholar 

  • Ostrowska Z, Kos-Kudla B, Marek B, Swietochowska E, Gorski J (2001) Assessment of the relationship between circadian variations of salivary melatonin levels and type I collagen metabolism in postmenopausal obese women. Neuro Endocrinol Lett 22:121–127

    CAS  PubMed  Google Scholar 

  • Ostrowska Z, Kos-Kudla B, Marek B, Kajdaniuk D (2003a) Influence of lighting conditions on daily rhythm of bone metabolism in rats and possible involvement of melatonin and other hormones in this process. Endocr Regul 37:163–174

    CAS  PubMed  Google Scholar 

  • Ostrowska Z, Kos-Kudla B, Nowak M, Swietochowska E, Marek B, Gorski J, Kajdaniuk D, Wolkowska K (2003b) The relationship between bone metabolism, melatonin and other hormones in sham-operated and pinealectomized rats. Endocr Regul 37:211–224

    CAS  PubMed  Google Scholar 

  • Oyama J, Murai I, Kanazawa K, Machida M (2006) Bipedal ambulation induces experimental scoliosis in C57BL/6 J mice with reduced plasma and pineal melatonin levels. J Pineal Res 40:219–224

    Article  CAS  PubMed  Google Scholar 

  • Park KH, Kang JW, Lee EM, Kim JS, Rhee YH, Kim M, Jeong SJ, Park YG, Kim SH (2011) Melatonin promotes osteoblastic differentiation through the BMP/ERK/Wnt signaling pathways. J Pineal Res 51:187–194

    Article  CAS  PubMed  Google Scholar 

  • Potocki L, Glaze D, Tan DX, Park SS, Kashork CD, Shaffer LG, Reiter RJ, Lupski JR (2000) Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J Med Genet 37:428–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ptitsyn AA, Zvonic S, Conrad SA, Scott LK, Mynatt RL, Gimble JM (2006) Circadian clocks are resounding in peripheral tissues. PLoS Comput Biol 2:e16

    Article  PubMed  PubMed Central  Google Scholar 

  • Quevedo I, Zuniga AM (2010) Low bone mineral density in rotating-shift workers. J Clin Densitom 13:467–469

    Article  PubMed  Google Scholar 

  • Radio NM, Doctor JS, Witt-Enderby PA (2006) Melatonin enhances alkaline phosphatase activity in differentiating human adult mesenchymal stem cells grown in osteogenic medium via MT2 melatonin receptors and the MEK/ERK (1/2) signaling cascade. J Pineal Res 40:332–342

    Article  CAS  PubMed  Google Scholar 

  • Richter HG, Torres-Farfan C, Garcia-Sesnich J, Abarzua-Catalan L, Henriquez MG, Alvarez-Felmer M, Gaete F, Rehren GE, Seron-Ferre M (2008) Rhythmic expression of functional MT1 melatonin receptors in the rat adrenal gland. Endocrinology 149:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Robinson LJ, Yaroslavskiy BB, Griswold RD, Zadorozny EV, Guo L, Tourkova IL, Blair HC (2009) Estrogen inhibits RANKL-stimulated osteoclastic differentiation of human monocytes through estrogen and RANKL-regulated interaction of estrogen receptor-alpha with BCAR1 and Traf6. Exp Cell Res 315:1287–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth JA, Kim BG, Lin WL, Cho MI (1999) Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem 274:22041–22047

    Article  CAS  PubMed  Google Scholar 

  • Sack RL, Lewy AJ, Erb DL, Vollmer WM, Singer CM (1986) Human melatonin production decreases with age. J Pineal Res 3:379–388

    Article  CAS  PubMed  Google Scholar 

  • Sadat-Ali M, Al-Habdan I, Al-Othman A (2000) Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine 67:62–64

    CAS  PubMed  Google Scholar 

  • Saintier D, Khanine V, Uzan B, Ea HK, de Vernejoul MC, Cohen-Solal ME (2006) Estradiol inhibits adhesion and promotes apoptosis in murine osteoclasts in vitro. J Steroid Biochem Mol Biol 99:165–173

    Article  CAS  PubMed  Google Scholar 

  • Samsa WE, Vasanji A, Midura RJ, Kondratov RV (2016) Deficiency of circadian clock protein BMAL1 in mice results in a low bone mass phenotype. Bone 84:194–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlemmer A, Hassager C, Jensen SB, Christiansen C (1992) Marked diurnal variation in urinary excretion of pyridinium cross-links in premenopausal women. J Clin Endocrinol Metab 74:476–480

    CAS  PubMed  Google Scholar 

  • Seifert-Klauss V, Prior JC (2010) Progesterone and bone: actions promoting bone health in women. J Osteoporos 2010:845180

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethi S, Radio NM, Kotlarczyk MP, Chen C, Wei Y, Jockers R, Witt-Enderby PA (2010) Determination of the minimal melatonin exposure required to induce osteoblast differentiation from human mesenchymal stem cells and these effects on downstream signaling pathways. J Pineal Res 49:222–238

    Article  CAS  PubMed  Google Scholar 

  • Sewerynek E, Lewinski A (1989) Melatonin inhibits mitotic activity of adrenocortical cells in vivo and in organ culture. J Pineal Res 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Silver R, Lesauter J, Tresco PA, Lehman MN (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813

    Article  CAS  PubMed  Google Scholar 

  • Smolensky MH, Sackett-Lundeen LL, Portaluppi F (2015) Nocturnal light pollution and underexposure to daytime sunlight: complementary mechanisms of circadian disruption and related diseases. Chronobiol Int 32:1029–1048

    Article  PubMed  Google Scholar 

  • Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R (2001) Estrogen decreases osteoclast formation by down-regulating receptor activator of NF-kappa B ligand (RANKL)-induced JNK activation. J Biol Chem 276:8836–8840

    Article  CAS  PubMed  Google Scholar 

  • Stevens RG (2006) Artificial lighting in the industrialized world: circadian disruption and breast cancer. Cancer Causes Control 17:501–507

    Article  PubMed  Google Scholar 

  • Suzuki N, Hattori A (2002) Melatonin suppresses osteoclastic and osteoblastic activities in the scales of goldfish. J Pineal Res 33:253–258

    Article  CAS  PubMed  Google Scholar 

  • Turgut M, Kaplan S, Turgut AT, Aslan H, Guvenc T, Cullu E, Erdogan S (2005) Morphological, stereological and radiological changes in pinealectomized chicken cervical vertebrae. J Pineal Res 39:392–399

    Article  CAS  PubMed  Google Scholar 

  • Uebelhart D, Schlemmer A, Johansen JS, Gineyts E, Christiansen C, Delmas PD (1991) Effect of menopause and hormone replacement therapy on the urinary excretion of pyridinium cross-links. J Clin Endocrinol Metab 72:367–373

    Article  CAS  PubMed  Google Scholar 

  • Waldhauser F, Weiszenbacher G, Frisch H, Zeitlhuber U, Waldhauser M, Wurtman RJ (1984) Fall in nocturnal serum melatonin during prepuberty and pubescence. Lancet 1:362–365

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Wu Y, Yang Y, Chen J, Zhang D, Hu Y, Liu Z, Xu J, Shen Q, Zhang N, Mao X, Liu C (2015) The associations of bedtime, nocturnal, and daytime sleep duration with bone mineral density in pre- and post-menopausal women. Endocrine 49:538–548

    Article  CAS  PubMed  Google Scholar 

  • Witt-Enderby PA, Slater JP, Johnson NA, Bondi CD, Dodda BR, Kotlarczyk MP, Clafshenkel WP, Sethi S, Higginbotham S, Rutkowski JL, Gallagher KM, Davis VL (2012) Effects on bone by the light/dark cycle and chronic treatment with melatonin and/or hormone replacement therapy in intact female mice. J Pineal Res 53:374

    Google Scholar 

  • Yim AP, Yeung HY, Sun G, Lee KM, Ng TB, Lam TP, Ng BK, Qiu Y, Moreau A, Cheng JC (2013) Abnormal skeletal growth in adolescent idiopathic scoliosis is associated with abnormal quantitative expression of melatonin receptor, MT2. Int J Mol Sci 14:6345–6358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaminy A, Ragerdi Kashani I, Barbarestani M, Hedayatpour A, Mahmoudi R, Farzaneh Nejad A (2008) Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Iran Biomed J 12:133–141

    Google Scholar 

  • Zawilska JB, Skene DJ, Arendt J (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61:383–410

    Article  CAS  PubMed  Google Scholar 

  • Zeitzer JM, Duffy JF, Lockley SW, Dijk DJ, Czeisler CA (2007) Plasma melatonin rhythms in young and older humans during sleep, sleep deprivation, and wake. Sleep 30:1437–1443

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Su P, Xu C, Chen C, Liang A, Du K, Peng Y, Huang D (2010) Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARgamma expression and enhancing Runx2 expression. J Pineal Res 49:364–372

    Article  CAS  PubMed  Google Scholar 

  • Zhou JN, Liu RY, van Heerikhuize J, Hofman MA, Swaab DF (2003) Alterations in the circadian rhythm of salivary melatonin begin during middle-age. J Pineal Res 34:11–16

    Article  CAS  PubMed  Google Scholar 

  • Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  CAS  PubMed  Google Scholar 

  • Zvonic S, Ptitsyn AA, Kilroy G, Wu X, Conrad SA, Scott LK, Guilak F, Pelled G, Gazit D, Gimble JM (2007) Circadian oscillation of gene expression in murine calvarial bone. J Bone Miner Res 22:357–365

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula A. Witt-Enderby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Maria, S., Witt-Enderby, P.A. (2017). Circadian Regulation of Bone. In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_3

Download citation

Publish with us

Policies and ethics