Skip to main content

Circadian Dysregulation and Melatonin Rhythm Suppression in the Context of Aging

  • Chapter
  • First Online:
Circadian Rhythms and Their Impact on Aging

Part of the book series: Healthy Ageing and Longevity ((HAL,volume 7))

Abstract

Fifty years ago, little was known of the role of the prevailing light:dark environment in terms of its impact on the circadian pathophysiology of organisms. In the intervening years the field of photoperiodic regulation of the master circadian oscillator, i.e., the suprachiasmatic nucleus (SCN), has advanced at a rapid pace. The importance of the regulatory actions of the light:dark cycle, and particularly of perturbed light:dark cycles, not only on the SCN but also on the circadian production of pineal melatonin as well as the cyclic metabolism of cells throughout the body are by no means trivial. When the regular cyclic information generated and dispensed by the SCN is dysregulated, the negative consequences in terms of cellular and organismal physiology can be dire to the extent that the rate of aging and the onset and progression of a variety of age-related diseases have now been at least provisionally linked to circadian disruption and/or melatonin suppression. While the findings are not definitive, there is certainly credible data to warrant the conclusion that regular circadian rhythms at multiple levels, including a stable day:night melatonin cycle, enhance life quality and potentially delay senescence and forestall diseases normally associated with advanced age. As a result, the prolonged health span may also predispose to a longer life span . In view of the critical role of an abnormal or unusual light environment in terms of perturbing essential circadian physiological events, serious consideration should be given to rational thought about the misuse of artificial light and the consequences thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agorastos A, Linthorst ACE (2016) Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 61:3–26

    Article  CAS  PubMed  Google Scholar 

  • Alexander P (1967) The role of DNA lesion in processes leading to aging in mice. Symp Soc Exp Biol 21:29

    CAS  PubMed  Google Scholar 

  • Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via P13/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 59:47–59

    Article  CAS  PubMed  Google Scholar 

  • Allen RG (1990) Role of free radicals in senescence. Annu Rev Gerontal Geriatr 10:198–213

    CAS  Google Scholar 

  • Ames BN (1989) Endogenous DNA damage as related to cancer and aging. Mutat Res 214:41–46

    Article  CAS  PubMed  Google Scholar 

  • Anderson G, Rodriguez M (2011) Multiple sclerosis, seizures, and antiepileptics: role of IL-18, IDO, and melatonin. Eur J Neurol 18:680–685

    Article  CAS  PubMed  Google Scholar 

  • Asher G, Gatfield D, Stratmann LM, Reinke H, Dibner C, Kreppel E Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates the circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Google Scholar 

  • Austad SN (2007) Vertebrate aging research 2006. Aging Cell 6:135–138

    Article  CAS  PubMed  Google Scholar 

  • Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70:37–47

    Article  CAS  PubMed  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 854:224–238

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons for better or worse, in sickness and health. Genome Res 18:343–358

    Article  CAS  PubMed  Google Scholar 

  • Belancio VP, Roy-Engel AM, Deininger PL (2010a) All y’all need to know ‘bout retroelements in cancer’. Semin Cancer Biol 20:200–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belancio VP, Roy-Engel AM, Pochampally RR, Deininger P (2010b) Somatic expression of LINE-1 elements in human tissues. Nuclei Acids Res 38:3909–3922

    Article  CAS  Google Scholar 

  • Belancio VP, Blask DE, Deininger P, Hill SM, Jazwinski SM (2015) The aging clock and circadian control of metabolism and genomic stability. Front Genet 5:455

    Google Scholar 

  • Benot S, Gobema R, Reiter RJ, Garcia-Maurino S, Osuna C, Guerrero JM (1999) Physiological levels of melatonin contribute to the antioxidant capacity of human serum. J Pineal Res 27:59–64

    Article  CAS  PubMed  Google Scholar 

  • Blask DE, Brainard GC, Dauchy RT, Hanifin JP, Davidson LK, Krause JA, Sauer LA, Rivera-Bermudez MA, Dubocovich ML, Jasser SA, Lynch DT, Rollag MD, Zalatan F (2005) Melatonin-depleted blood from premenopausal woman exposed to light at night stimulates growth of human cancer xenografts in nude rats. Cancer Res 65:11174–11184

    Article  CAS  PubMed  Google Scholar 

  • Bonizzi G, Cicalese A, Insigna A, Pelicci PG (2002) The emerging role of p53 in stem cells. Trenda Mol Med 18:6–12

    Article  CAS  Google Scholar 

  • Brand MD (2016) Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling. Free Radic Biol Med 100:14–31

    Google Scholar 

  • Buijs FN, Leon-Mercado L, Guzman-Ruiz R, Guerrero-Vargas NN, Romo-Nava F, Buijs RM (2016) The circadian system: a regulatory feedback network of periphery and brain. Physiology (Bethesda) 31:170–181

    Google Scholar 

  • Busuttil RA, Rubio M, Dolle ME, Campisi J, Vijg J (2003) Oxygen accelerates the accumulation of melatonin during the senescence and immortalization of murine cells in culture. Aging Cell 2:287–294

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  CAS  PubMed  Google Scholar 

  • Caplan AL, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinali DP, Bortman GP, Liotta G, Perez-Lloret S, Albornoz LE, Cutrera RA, Batista J, Ortega Gallo P (2002) A multifactorial approach employing melatonin to accelerate resynchronization of sleep-wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res 32:41–46

    Google Scholar 

  • Cardinali DP, Vigo DE, Olivar N, Vidal MF, Furio AM, Brusco LI (2012) Therapeutic application of melatonin in mild cognitive impairment. Am J Neurodegener Dis 1:280–291

    PubMed  PubMed Central  Google Scholar 

  • Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464

    Article  CAS  PubMed  Google Scholar 

  • Chen HH, Lin KC, Wallace CG, Chen YT, Yang Y, Leu S, Chen YC, Sun CK, Tsai TH, Chen YL, Chung SY, Chang CL, Yip HK (2014a) Additional benefit of combined therapy with melatonin and apoptotic adipose derived mesenchymal stem cells against sepsis-induced kidney injury. J Pineal Res 57:16–32

    Article  CAS  PubMed  Google Scholar 

  • Chen YT, Chiang HJ, Chen CH, Sung PH, Lee FY, Tsai TH, Chang CL, Chen HH, Sun CK, Leu S, Chang HW, Yang CC, Yip HK (2014b) Melatonin treatment further improves adipose-derived mesenchymal stem cell therapy for acute interstitial cystitis in rat. J Pineal Res 57:248–261

    Article  CAS  PubMed  Google Scholar 

  • Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J Pineal Res 56:371–381

    Article  CAS  PubMed  Google Scholar 

  • Clafshenkel WP, Rutkowski JL, Palchesko RN, Romeo JD, McGowan KA, Gawalt ES, Witt-Enderby PA (2012) A novel calcium aluminate-melatonin scaffold enhances bone regeneration within a calvarial defect. J Pineal Res 53:206–218

    Article  CAS  PubMed  Google Scholar 

  • Clarke RC, Daly L, Robinson K, Naughten E (1991) Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 324:1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Coelho LA, Peres R, Amaral FG, Reiter RJ, Cipolla-Neto J (2015) Daily differential expression of melatonin-related genes and clock genes in rat cumulus-oocyte complex: changes after pinealectomy. J Pineal Res 58:490–499

    Article  CAS  PubMed  Google Scholar 

  • Coomans CP, Lucassen EA, Kooljman S, Fifel K, Deboer T, Rensen PC, Michel S, Meijer JH (2015) Plasticity of circadian clocks and consequences for metabolism. Diabetes Obes Metab 17(Supp1):65–75

    Article  PubMed  Google Scholar 

  • Coutu DL, Francois M, Galipeau J (2011) Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 117:6112–6801

    Article  CAS  Google Scholar 

  • Cutando A, Aneiros-Fernandez J, Lopez-Valverde A, Arias-Santiago S, Aneiros-Cachaza J, Reiter RJ (2011) A new perspective in oral health: potential importance and actions of melatonin receptors MT1, MT2, MT3 and RZR/ROR in the oral cavity. Arch Oral Biol 56:944–950

    Article  CAS  PubMed  Google Scholar 

  • Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC (2003) Expansion of human SCID-repopulating cells under hypoxic conditions. J Clin Invest 112:126–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dauchy RT, Dauchy EM, Hanifin JP, Gauthreaux SL, Mao L, Belancio VP, Ooms TG, Dupepe LM, Jablonski MR, Warfield B, Wren MA, Brainard GC, Hill SM, Blask DE (2013) Effects of spectral transmissance through standard laboratory cages on circadian metabolism and physiology in nude rats. J Am Assoc Lab Anim Sci 52:146–156

    CAS  PubMed  PubMed Central  Google Scholar 

  • deHaro D, Kines KJ, Sokolowski M, Dauchy RT, Va Streva, Hill SM (2014) Regulation of L1 expression and retro transposition by melatonin and its receptor: implications for cancer risk associated with light exposure at night. Nucleic Acids Res 42:7694–7707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Avanzas P (2012) The role of melatonin in acute myocardial infarction. Front Biosci 17:2433–2441

    Article  CAS  Google Scholar 

  • Dominguez-Rodriguez A, Abreu-Gonzalez P, Picollo R, Galasso G, Reiter RJ (2016) Melatonin is associated with reverse remodeling after cardiac resynchronization therapy in patients with heart failure and ventricular dyssynchrony. Int J Cardiol 221:359–363

    Article  PubMed  Google Scholar 

  • Dumont M, Lanctot V, Cadieux-Viau R, Paquet J (2012) Melatonin production and light exposure of rotating night workers. Chronobiol Int 29:203–210

    Article  CAS  PubMed  Google Scholar 

  • Eom YW, Oh JE, Lee JI, Baik SK, Rhee KJ, Shin HC, Kim YM, Ahn CM, Kong JH, Kim HS, Shim KY (2014) The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem Biophys Res Commun 445:16–22

    Article  CAS  PubMed  Google Scholar 

  • Erren TC, Reiter RJ (2008) A generalized theory of carcinogenesis due to chronodisruption. Neuroendocrinol Lett 29:815–821

    PubMed  Google Scholar 

  • Erren TC, Reiter RJ (2009) Defining chronodisruption. J Pineal Res 46:245–247

    Article  CAS  PubMed  Google Scholar 

  • Erren TC, Falaturi P, Reiter RJ (2010) Research into the chronodisruption-cancer theory: the imperative for causal clarification and the danger of causal reductionism. Neuroendocr Lett 31:1–3

    Google Scholar 

  • Erren TC, Morfeld P, Foster RG, Reiter RJ, Gross JV, Westermann IK (2016) Sleep and cancer: synthesis of experimental data and meta-analyses of cancer incidence among some 1,500,000 study individuals in 13 countries. Chronobiol Int 22:1–26

    Google Scholar 

  • Escribano BM, Colin-Gonzalez AL, Santamaria A, Tunez I (2014) The role of melatonin in multiple sclerosis, Huntington’s disease and cerebral ischemia. CNS Neurol Disord: Drug Targets 13:096–1119

    Article  CAS  Google Scholar 

  • Ethuwapranee K, Sotthibundhu A, Govitropong P (2015) Melatonin attenuates methamphetamine-induced inhibition of proliferation of adult rat hippocampal progenitor cells in vitro. J Pineal Res 58:418–428

    Article  CAS  Google Scholar 

  • Farez MF, Calandri IL, Correale J, Quintana FJ (2016) Anti-inflammatory effects of melatonin multiple sclerosis. Bioassays

    Google Scholar 

  • Favero G, Franceschetti L, Rodella LF, Rezzani R (2015) Sirtuins, aging and cardiovascular risk. Age 37:9804

    PubMed  Google Scholar 

  • Forman HJ (2016) Redox signaling: an evolution from free radicals to aging. Free Radic Biol Med 97:398–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galley HF (2010) Bench-to beside review: targeting antioxidants to mitochondria in sepsis. Crit Care 14:230–239

    PubMed  PubMed Central  Google Scholar 

  • Gasior SL, Wakeman TP, Xu B, Deininger PL (2006) The human LINE-1 retrotransposon creates DNA double-strand breaks. J Mol Biol 357:1383–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Zhou Z (2015) SIRTain regulators of premature senescence and accelerated aging. Protein Cell 6:322–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90:1063–1072

    Article  CAS  PubMed  Google Scholar 

  • Granados-Fuentes D, Hermanstyne TO, Carrasquillo Y, Nerbonne JM, Herzog ED (2015) IA channels encoded by kv1.4 and Kv4.2 regulate circadian period of PER2 expression in the suprachiasmatic nucleus. J Biol Rhythms 30:396–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grinna LS (1977) Changes in cell membranes during aging. Gerontology 23:452–464

    Article  CAS  PubMed  Google Scholar 

  • Guitart AV, Hammoud M, Dello Sbarba P, Ivanovic Z, Praloran V (2010) Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp Hematol 38:847–851

    Article  CAS  PubMed  Google Scholar 

  • Hansen J (2001) Increased breast cancer risk among women who work predominantly at night. Epidemiology 12:74–77

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R (2012) Melatonin in aging and disease—multiple consequences of reduced secretion, options and limits of treatment. Aging Dis 3:194–225

    PubMed  Google Scholar 

  • Hardeland R (2013) Melatonin and the theories of aging: a critical appraisal of melatonin’s role in antiaging mechanisms. J Pineal Res 55:325–356

    CAS  PubMed  Google Scholar 

  • Hardeland R (2015) Melatonin and circadian oscillators in aging—a dynamic approach to the multiple connected players. Interdiscip Top Gerontol 40:128–140

    Article  PubMed  Google Scholar 

  • Hardeland R (2016) Melatonin and synthetic melatoninergic agonists in psychiatric and age-associated disorders: successful and unsuccessful approaches. Curr Pharm Res 22:1086–1101

    Article  CAS  Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signaling. J Pineal Res 52:139–166

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Cardinali DP Brown GM, Pandi-Perumal SR (2015) Melatonin and brain inflammaging. Prog Neurobiol 127–128:46–63

    Google Scholar 

  • Haus EL, Smolensky MH (2013) Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation. Sleep Med Rev 17:273–284

    Article  PubMed  Google Scholar 

  • Hawkins K, Joy S, McKay T (2014) Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 6:620–628

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayflick L (1979) The cell biology of aging. J Invest Dermatol 73:8–14

    Article  CAS  PubMed  Google Scholar 

  • Henden T, Stokkan KA, Reiter RJ, Nonaka K, Lerchl A, Jones DJ (1992) Age-associated reduction in pineal β-adrenergic receptor density is prevented by life-long food restriction in rats. Biol Signals 1:34–39

    Article  CAS  PubMed  Google Scholar 

  • Herrero A, Barja G (1998) H2O2 production of heart mitochondria and aging rats are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech Aging Dev 103:133–146

    Article  CAS  PubMed  Google Scholar 

  • Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T, Gackowska A, Anderson R, Paschok M, Mann J, Passos JF (2012) Telomeres are favored targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun 3:1–9

    Article  CAS  Google Scholar 

  • Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg DW, Summers W, Yuan L, Frash T, Blask DE (2015) Melatonin: an inhibitor of breast cancer. Endocr Relat Cancer 22:R183–R201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hocman G (1979) Biochemistry of aging. Int J Biochem 10:867–876

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JC, Van Den BD, Kang H, Hsieh CL, Lieber MR (2013) Large chromosome deletions, duplications, and gene conversion events accumulate with age in normal human colon crypts. Aging Cell 12:269–279

    Article  CAS  PubMed  Google Scholar 

  • Hughes S, Jagannath A, Rodgers J, Hankins MW, Peirson SN, Foster RG (2016) Signaling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye 30:247–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Ingenwerth M, Reinbeck AL, Stahr A, Partke HJ, Roden M, Burkart V, von Gall C (2016) Perturbation of the molecular clockwork in the SCN of non-obese diabetic mice prior to diabetes onset. Chronobiol Int 2:1–7

    Google Scholar 

  • Ingram DK, Roth GS (2015) Caloric restriction mimetrics: can you have your cake and eat it too? Aging Res Rev 20:46–62

    Article  Google Scholar 

  • Ikeno T, Yan L (2016) Chronic light exposure in the middle of the night disturbs the circadian system and emotional regulation. J Biol Rhythms 31:352–364

    Article  CAS  PubMed  Google Scholar 

  • Irmak MK, Sizlan A (2006) Essential hypertension seems to result from melatonin-induced epigenetic modifications in area postrema. Med Hypotheses 66:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Jazwinski SM, Kim S, Dai J, Li L, Bi X, Jiang JC, Arnold J, Batzer MA, Walker JA, Welsh DA, Lefante CM (2010) HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging. Aging Cell 9:698–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Wagers AJ (2008) No place like home: anatomy and function of stem cells. Mol Cell Biol 9:11–21

    CAS  Google Scholar 

  • Jones OR, Gaillard JM, Tuljapunkar S (2008) Senescence rates are determined by ranking on the fast-slow life-history continuum. Ecol Lett 11:664–673

    Article  PubMed  Google Scholar 

  • Jones OR, Scheuerlein A, Salguero-Gomez R, Camarda CG, Schaible R, Casper BB (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    Article  CAS  PubMed  Google Scholar 

  • Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Bever C, Kipp M, Zendedel A (2014) Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp Brain Res 232:2835–2846

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Bi X, Czarny-Ratajczak M, Dai J, Welsh DA, Myers L, Welsch MA, Cherry KE, Arnold J, Poor LW, Jazwinski SM (2012) Telomere maintenance genes SIRT1 and XRCC6 impact age-related decline in telomere length but only SIRT1 is associated with human longevity. Biogerontology 13:119–131

    Article  CAS  PubMed  Google Scholar 

  • Kleszczynski K, Fischer TW (2012) Melatonin and skin aging. Dermatoendocrinology 4:245–252

    Article  CAS  Google Scholar 

  • Kovacic P, Somanathan R (2014) Melatonin and circadian rhythm: aging, cancer and mechanism. J Prevent Med 4:545–560

    Google Scholar 

  • Lamia KA, Storch KF, Wectz CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Nat Acad Sci USA 105:15172–15177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park RJ (2012) Cancer genome atlas research network. Science 337:967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SJ, Jung YH, Oh SY, Yun SP, Han HJ (2014) Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with Gαq in skin wound healing. J Pineal Res 57:393–407

    Article  CAS  PubMed  Google Scholar 

  • Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP (1980) Light suppresses melatonin secretion in humans. Science 210:1267–1269

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Yang G, Tan J, Tuan RS (2012) Influence of decellularized matrix derived from human mesenchymal stem cells on their proliferation, migration and multi-lineage differentiation potential. Biomaterials 33:4480–4489

    Article  CAS  PubMed  Google Scholar 

  • Liu LF, Qian ZH, Qin Q, Shi M, Zhang H, Tao XM, Zhu WP (2015) Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet Mol Res 14:7481–7489

    Article  CAS  PubMed  Google Scholar 

  • Lo JL, Groeger JA, Cheung CH, Dijk DJ, Chee MW (2016) Self reported sleep duration and cognitive performance in older adults: a systematic review and metric-analysis. Sleep Med 17:87–98

    Article  PubMed  Google Scholar 

  • Lopez-Gonzalez A, Alvarez-Sanchez N, Lardone PJ, Cruz-Chamorro I, Martinez-Lopez A, Guerrero JM, Reiter RJ, Carrillo-Vico A (2015) Melatonin treatment improves primary progressive multiple sclerosis: a case report. J Pineal Res 58:173–177

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondria function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Brit J Anaesth 110:472–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, Czeisler CA et al (2014) Measuring and using light in the melanopsin age. Trends Neurosci 37:1–9

    Article  CAS  PubMed  Google Scholar 

  • Luchetti F, Canonico R, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G, Piroddi M, Papa S, Reiter RJ, Galli F (2014) Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res 56:382–397

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419

    Article  CAS  PubMed  Google Scholar 

  • Martin V, Garcia-Santos G, Rodriguez-Blanco J, Casado-Zapico S, Sanchez-Sanchez A, Antolin I, Rodriguez C (2010) Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death. Cancer Lett 287:216–233

    Article  CAS  PubMed  Google Scholar 

  • Mattis J, Sehgal A (2016) Circadian rhythms, sleep and disorders of aging. Trends Endocrinol Metab 27:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant W, Barnard D, Ward WF, Qi W, Ingram DK (2012) Impact for caloric restriction on health and survival in rhesus monkeys from the NIA study. Nuture 489:318–321

    Article  CAS  Google Scholar 

  • Mayo JC, Sainz RM, Tan DX, Antolin I, Rodriguez C, Reiter RJ (2005) Melatonin and Parkinson’s disease. Endocrine 27:169–178

    Article  CAS  PubMed  Google Scholar 

  • McKiernan SH, Colman RJ, Lopez M, Beasley TM, Aiken JM, Anderson RM, Weindruch R (2011) Caloric restriction delays aging-induced cellular phenotypes in rhesus monkey skeletal muscle. Exp Gerontol 46:23–29

    Article  CAS  PubMed  Google Scholar 

  • Medeiros CA, Carvalhedo de Bruin PF, Lopes LA, Magalhaes ML, de Lourdes Seabra M, de Bruin VM (2007) Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J Neurol 254:459–464

    Article  CAS  PubMed  Google Scholar 

  • Meites J (1990) Aging: hypothalamic catecholamines, neuroendocrine-immune interactions, and dietary restriction. Proc Soc Exp Biol Med 195:304–311

    Article  CAS  PubMed  Google Scholar 

  • Miller E, Morel A, Saso L, Saluk J (2015) Melatonin redox activity. Its potential clinical applications in neurodegenerative disorders. Curr Top Med Chem 15:163–169

    Article  CAS  PubMed  Google Scholar 

  • Opie LH, Lecour S (2016) Melatonin has multiorgan effects. Eur Heart J Cardiovasc Pharmaocother 2:258–264

    Article  Google Scholar 

  • Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J 29:4766–4771

    Article  CAS  PubMed  Google Scholar 

  • Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutar Bartlebaugh J, Vander Heiden MG, Jacks T (2016) Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab 24:324–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DLM, Reiter RJ, Efthimiopoulos S, Robakis NK (1997) Melatonin prevents death of neuroblastoma cells exposed to the Alzheimer amyloid peptide. J Neurosci 17:1683–1690

    CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauls SD, Honma K, Honma S, Silver R (2016) Deconstructing circadian rhythmicity with models and manipulations. Trends Neurosci 39:405–419

    Article  CAS  PubMed  Google Scholar 

  • Pechanova O, Paulis L, Simko F (2014) Peripheral and central effects of melatonin on blood pressure regulation. Int J Mol Sci 15:1937–17920

    Article  CAS  Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool 220:417–437

    Article  Google Scholar 

  • Ptacek LJ, Jones CR, Fu YH (2007) Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harbor Symp Quat Biol 72:273–277

    Article  CAS  Google Scholar 

  • Rae M (2004) It’s never too late: calorie restriction is effective in older mammals. Rejuvenation Res 7:3–8

    Article  PubMed  Google Scholar 

  • Ramis MR, Esteban S, Miralles A, Tan DX, Reiter RJ (2015) Calorie restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related diseases. Mech Ageing Dev 146:28–41

    Article  PubMed  CAS  Google Scholar 

  • Rao D, Yu H, Bai Y, Zheng X, Xie L (2015) Does night-shift work increase the risk of prostate cancer? A systematic review and meta-analysis. Onco Targets Ther 8:2817–2826

    PubMed  PubMed Central  Google Scholar 

  • Reiter RJ (1995) The pineal gland and melatonin in relation to aging: a summary of the theories and the data. Exp Gerontol 30:199–212

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ (1997) Aging and oxygen toxicity: relation to changes in melatonin. Age 20:201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Tan DX, Kim SJ, Manchester LC, Qi W, Garcia JJ, Cabrera J, El-Sokkary G, Rouvier-Garay V (1999) Augmentation of indices of oxidative damage in life-long melatonin-deficient rats. Mech Aging Dev 110:157–173

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Korkmaz A, Erren TC, Piekarski C, Tamura H, Manchester LC (2007) Light-at-night, chronodisruption, melatonin suppression and cancer risk: a review. Crit Rev Oncol 13:303–328

    Article  Google Scholar 

  • Reiter RJ, Tan DX, Korkmaz A, Ma S (2012a) Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med 44:564–577

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Madrid JA, Erren TC (2012b) When the circadian clock becomes a ticking time bomb. Chronobiol Int 29:1286–1287

    Article  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014a) Melatonin: exceeding expectations. Physiology (Bethesda) 29:325–333

    CAS  Google Scholar 

  • Reiter RJ, Tan DX, Kim SJ, Cruz MH (2014b) Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Str Funct 219:1873–1887

    Article  CAS  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martin V, Reiter RJ (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res 36:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rosales-Corral SA, Acuna-Castroviejo D, Coto-Montes A, Boga JA, Manchester LC, Fuentes-Broto L, Korkmaz A, Ma S, Tan DX, Reiter RJ (2012) Alzheimer’s disease: pathological mechanisms and the role of melatonin. J Pineal Res 52:167–202

    Article  CAS  PubMed  Google Scholar 

  • Roth SS, Ingram DK, Lane MA (1999) Caloric restriction in primates: will it work and how will we know. J Am Geriatr Sci 47:896–903

    Article  CAS  Google Scholar 

  • Santos CM (2012) New agents promote neuroprotection in Parkinson’s disease models. CNS Neurol Disorder Drug Targets 11:410–418

    Article  CAS  Google Scholar 

  • Scholtens R, van Munster BC, van Kempen MF, de Rooij SE (2016) Physiological melatonin levels in healthy old people: a systematic review. J Psychosom Res 86:20–27

    Google Scholar 

  • Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE (2016) A hot L1 retrotransposon evades somatic regression and initiates human colorectal cancer. Genome Res 26:745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EM (2015) Circadian clocks, obesity and cardiometabolic function. Diabetes Obes Metab 17(Suppl 1):84–89

    Article  PubMed  Google Scholar 

  • Shen S, He T, Chu J, He J, Chen X (2015) Uncontrolled hypertension and orthostatic hypotension in relation to standing balance in elderly hypertensive subjects. Clin Interv Aging 10:897–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuai Y, Liao L, Su X, Yu Y, Shao B, Jing H, Zhang X, Dang Z, Jin Y (2016) Melatonin treatment improves stem cell therapy by preserving stemness during long-term in vitro expression. Theranostics 6:1899–1917

    Article  PubMed  PubMed Central  Google Scholar 

  • Simko F, Baka T, Paulis L, Reiter RJ (2016) Elevated heart rate and nondipping heart rate as potential targets for melatonin: a review. J Pineal Res 61:127–137

    Article  CAS  PubMed  Google Scholar 

  • Skinner DC, Malpaux B (1999) High melatonin concentrations in third ventricular cerebrospinal fluid are not due to Galen vein blood recirculating through the choroid plexus. Endocrinology 140:4399–4405

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Allen RG (1990) Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp Gerontol 25:499–522

    Article  CAS  PubMed  Google Scholar 

  • Stehle JH, Saade A, Rawasdeh O, Ackermann K, Jilg A, Sebesteny T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43

    Article  CAS  PubMed  Google Scholar 

  • Steinberg D, Witztum JL (1990) Lipoproteins and atherogenesis. J Am Med Assoc 264:3047–3052

    Article  CAS  Google Scholar 

  • Stokkan KA, Reiter RJ, Nonaka KO, Lerchl A, Yu BP, Vaughan MK (1991) Food restriction retards aging of the pineal gland. Brain Res 545:66–72

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Chen LD, Poeggeler B, Manchester LC, Reiter RJ (1993) Melatonin: a potent endogenous hydroxyl radical scavenger. Endocr J 1:57–60

    Google Scholar 

  • Tsai CC, Su PF, Huang YF, Yew TL, Hung SC (2012) Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 47:162–182

    Article  CAS  Google Scholar 

  • van Wamelen DJ, Roos RA, Aziz NA (2015) Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 5:549–559

    Google Scholar 

  • Vaughan GM, Pelham RW, Pang SF, Loughlin LL, Wilson KM, Sandock KL, Vaughan MK, Koslow SH, Reiter RJ (1976) Nocturnal elevation of plasma melatonin and urinary 5-hydroxyindoleacetic acid in young men: attempts at modification by brief changes in environmental lighting and sleep and by autonomic drugs. J Clin Endocrinol Metab 42:752–764

    Article  CAS  PubMed  Google Scholar 

  • Venegas C, Garcia JA, Escames G, Ortiz F, Lopez A, Doerrier C, Garcia-Corzo L, Lopez LC, Reiter RJ (2012) Extrapineal melatonin: analysis of its subcellular distribution and daily fluctuations. J Pineal Res 52:217–227

    Article  CAS  PubMed  Google Scholar 

  • Vijg J, Dolle ME (2002) Large genome rearrangements as a primary cause of aging. Mech Aging Dev 123:907–915

    Article  CAS  PubMed  Google Scholar 

  • Vijg J, Suh Y (2013) Genome instability and aging. Annu Rev Physiol 75:645–668

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Li J, Wu C, Yang J, Xu F, Zhao Q (2003) The GABA(A) receptor mediates the hypnotic activity of melatonin in rats. Pharmacol Biochem Behav 74:573–578

    Article  CAS  PubMed  Google Scholar 

  • Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, Mertens N, Sperling S, Bohn M, Huther G, Ehrenreich H (2006) Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res 41:313–323

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Ariyannur PS, Ribeiro R, Tanaka M, Moffett JR, Kirmani BF, Namboodiri AM, Zhang Y (2016) Efficacy of N-acetylserotonin and melatonin in the EAE model of multiple sclerosis. J Neuroimmune Pharmacol 11:763–773

    Google Scholar 

  • Wu J, Issa JP, Herman J, Bassett DE Jr, Nelkin BD, Baylin SB (1993) Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc Natl Acad Sci USA 90:8891–8895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang S, Dauchy RT, Hauch A, Mao L, Yuan L, Wren MA, Belancio V, Mondal D, Frash T, Blask DE, Hill SM (2015) Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J Pineal Res 59:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yip HK, Chang YC, Wallace CG, Chang LT, Tsai TH, Chen YL, Chang HW, Leu S, Zhen YY, Tsai CY, Yeh SH, Sun CK, Yen CH (2013) Melatonin treatment improves adipose-derived mesenchymal stem therapy for acute lung ischemia-reperfusion injury. J Pineal Res 54:207–221

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Wang P, Ren L, Hu C, Bi J (2016) Protective effect of melatonin soluble Aβ1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimer’s Res Ther 8

    Google Scholar 

  • Zhou L, Chen X, Liu T, Gong Y, Chen S, Pan G, Cui W, Luo ZP, Pei M, Yang H, He F (2015) Melatonin reverses H2O2-induced premature senescence in mesenchymal stem cells via the SIRT1-dependent pathway. J Pineal Res 59:190–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zs-Nagy I (1978) A membrane hypothesis of aging. J Theoret Biol 75:189–195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Russel J. Reiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Reiter, R.J., Rosales-Corral, S.A., Tan, D.X., Alatorre-Jimenez, M., Lopez, C. (2017). Circadian Dysregulation and Melatonin Rhythm Suppression in the Context of Aging. In: Jazwinski, S., Belancio, V., Hill, S. (eds) Circadian Rhythms and Their Impact on Aging. Healthy Ageing and Longevity, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-64543-8_1

Download citation

Publish with us

Policies and ethics