Skip to main content

Microbial Fuel Cell: Waste Minimization and Energy Generation

  • Chapter
  • First Online:
Modern Age Environmental Problems and their Remediation

Abstract

Microbial fuel cells (MFCs) have gained a recent attention as a mode of converting organic waste into electricity using variety of biodegradable substrate as fuel. Different designs of MFCs are available for different purposes, however dual and single chamber MFCs are common used for energy generation. Type of electrode materials, membrane, pH, electron transfer rate, reactor design and operating conditions affects the performance of MFC. Microbes actively catabolize substrate and transform their chemical energy into electrical energy. MFCs could be utilized as power generator in small devices such as biosensor, pacemakers and by doing small modification (Microbial Electrolysis Cell) can produce hydrogen a potential fuel in cathodic chamber. Besides the merits of this technology, it is still immature and faces practical limitations such as low power and current density. The construction and analysis of MFCs requires knowledge of different disciplines ranging from microbiology and electrochemistry to materials and environmental engineering. This article presents various aspects of MFC technology for proper understanding of the readers. This article present an extensive literature survey of some selected papers published on MFC technology in the last decade. Various practical solutions have been suggested to overcome the practical challenges of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aelterman P, Rabaey K, Schamphelaire LD, Clauwaert P, Boon N, Verstraete W (2008) Microbial fuel cells as an engineered ecosystem. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy ASM Press, Washington, DC, pp 307–322

    Google Scholar 

  • Akdeniz F (2002.) Recent energy investigations on fossil and alternative nonfossil resources in Turkey ll u 43

    Google Scholar 

  • Babanova S, Hubenova Y, Mitov M (2011) Influence of artificial mediators on yeast-based fuel cell performance. J Biosci Bioeng 112:379–387

    Article  CAS  Google Scholar 

  • Beecroft NJ, Zhao F, Varcoe JR et al (2012) Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose. Appl Microbiol Biotechnol 93:423–437

    Article  Google Scholar 

  • Biotechnology AM (1999) Ulllted States Patent (19)

    Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobactersulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    Article  CAS  Google Scholar 

  • Catal T, Li K, Bermek H, Liu H (2008) Electricity production from twelve monosaccharides using microbial fuel cells. J Power Sources 175:196–200

    Google Scholar 

  • Chae K-J, Choi M-J, Lee J-W et al (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100:3518–3525

    Article  CAS  Google Scholar 

  • Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioprocess 3:1–14

    Article  Google Scholar 

  • Chaudhuri SK, Lovley DR (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat Biotechnol 21:1229–1232

    Article  CAS  Google Scholar 

  • Chookaew T, Prasertsan P, Ren ZJ (2014) Two-stage conversion of crude glycerol to energy using dark fermentation linked with microbial fuel cell or microbial electrolysis cell. New Biotechnol 31:179–184

    Article  CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  Google Scholar 

  • Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    Article  CAS  Google Scholar 

  • Elmekawy A, Srikanth S, Bajracharya S et al (2015) Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. FRIN 73:213–225

    CAS  Google Scholar 

  • El-Naggar MY, Finkel SE (2013) “Live wires.” The Scientist 1 May. 2013

    Google Scholar 

  • Fan Y, Han SK, Liu H (2012) Improved performance of CEA microbial fuel cells with increased reactor size. Energy Environ Sci 5:8273–8280

    Article  CAS  Google Scholar 

  • Faria A, Gonçalves L, Martins G (2016) Resources recovery in the dairy industry: bioelectricity production using a continuous microbial fuel cell: 1–6

    Google Scholar 

  • Gil G-C, Chang I-S, Kim BH et al (2003) Operational parameters affecting the performannce of a mediator-less microbial fuel cell. Biosens Bioelectron 18:327–334

    Article  CAS  Google Scholar 

  • Guo K, Hassett DJ, Gu T (2012) Microbial fuel cells: electricity generation from organic wastes by microbes

    Google Scholar 

  • Guo X, Zhan Y, Chen C et al (2016) Influence of packing material characteristics on the performance of microbial fuel cells using petroleum refinery wastewater as fuel. Renew Energy 87:437–444

    Article  CAS  Google Scholar 

  • Harnisch F, Schroder U (2010) From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems. Chem Soc Rev 39:4433–4448

    Article  CAS  Google Scholar 

  • Harris HW, El-naggar MY, Bretschger O et al (2009) Electrokinesis is a microbial behavior that requires extracellular electron transport. PNAS 107:326–331

    Article  Google Scholar 

  • Hoel M, Kvemdokk S (1996) Depletion of fossil fuels and the impacts of global warming. Resour Energy Econ 18:115–136

    Article  Google Scholar 

  • Hoogers G (2014) Fuel cell technology handbook. CRC Press, Boca Raton

    Google Scholar 

  • Hu W, Niu C, Wang Y et al (2010) Nitrogenous heterocyclic compounds degradation in the microbial fuel cells. Process Saf Environ Prot 89:133–140

    Article  Google Scholar 

  • Huang L, Regan JM, Quan X (2011) Bioresource technology electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102:316–323

    Article  CAS  Google Scholar 

  • Ieropoulos IA, Greenman J, Melhuish C, Hart J (2005) Comparative study of three types of microbial fuel cell. Enzym Microb Technol 37:238–245

    Article  CAS  Google Scholar 

  • Jafari H, Hossein A, Jonidi A et al (2013) Enzyme and microbial technology bioelectricity generation using two chamber microbial fuel cell treating wastewater from food processing. Enzym Microb Technol 52:352–357

    Article  Google Scholar 

  • Khan MZ, Singh S, Sreekrishnan TR, Ahammad SZ (2014) Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Adv 4:46851–46859

    Article  CAS  Google Scholar 

  • Khan MD, Abdulateif H, Ismail IM et al (2015a) Bioelectricity generation and bioremediation of an Azo-Dye in a microbial fuel cell coupled activated sludge process. PLoS One 10:e0138448

    Article  Google Scholar 

  • Khan MZ, Singh S, Sultana S et al (2015b) Studies on the biodegradation of two different azo dyes in bioelectrochemical systems. New J Chem 39:5597–5604

    Article  CAS  Google Scholar 

  • Khan MD, Khan N, Sultana N et al (2017) Bioelectrochemical conversion of waste to energy using microbial fuel cell technology. Process Biochem 57:141–158

    Article  CAS  Google Scholar 

  • Lin CW, Wu CH, Chiu YH, Tsai SL (2014) Effects of different mediators on electricity generation and microbial structure of a toluene powered microbial fuel cell. Fuel 125:30–35

    Article  CAS  Google Scholar 

  • Liu H, Grot S (2005) Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol 39:4317–4320

    Article  CAS  Google Scholar 

  • Liu H, Cheng S, Logan BE (2005) Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ Sci Technol 39:658–662

    Article  CAS  Google Scholar 

  • Logan BE, Liu H (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ Sci Technol 38:4040–4046

    Article  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R et al (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Logan BE, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ Sci Technol 41:3341–3346

    Article  CAS  Google Scholar 

  • Luo Y, Zhang F, Wei B et al (2011) Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. J Power Sources 196:9317–9321

    Article  CAS  Google Scholar 

  • Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96

    Article  CAS  Google Scholar 

  • Min B, Kim J, Oh S et al (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res 39:4961–4968

    Article  CAS  Google Scholar 

  • Mink JE, Rojas JP, Logan BE, Hussain MM (2012) Vertically grown multi-walled carbon nanotube anode and nickel silicide integrated high performance micro- sized ( 1.25 μL) microbial fuel cell (supporting information). Nano Lett 12:791–795

    Article  CAS  Google Scholar 

  • Miran W, Nawaz M, Jang J, Lee DS (2016) International biodeterioration & biodegradation sustainable electricity generation by biodegradation of low-cost lemon peel biomass in a dual chamber microbial fuel cell. Int Biodeterior Biodegrad 106:75–79

    Article  CAS  Google Scholar 

  • Najafabadi AT, Ng N, Gyenge E (2016) Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells. Biosens Bioelectron 81:103–110

    Article  CAS  Google Scholar 

  • Oh ST, Kim JR, Premier GC et al (2010) Sustainable wastewater treatment: how might microbial fuel cells contribute. Biotechnol Adv 28:871–881. doi:10.1016/j.biotechadv.2010.07.008

  • Oon Y, Ong S, Ho L et al (2017) Bioresource technology role of macrophyte and effect of supplementary aeration in up-flow constructed wetland-microbial fuel cell for simultaneous wastewater treatment and energy recovery. Bioresour Technol 224:265–275

    Article  CAS  Google Scholar 

  • Pandey P, Shinde VN, Deopurkar RL et al (2016) Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl Energy 168:706–723

    Article  CAS  Google Scholar 

  • Pandit S, Khilari S, Roy S, Pradhan D, Das D (2014) Improvement of power generation using Shewanella putrefaciens mediated bioanode in a single chambered microbial fuel cell: effect of different anodic operating conditions. Bioresour Technol 166:451–457

    Article  CAS  Google Scholar 

  • Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1543

    Article  CAS  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373

    Article  CAS  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39:8077–8082

    Article  CAS  Google Scholar 

  • Rabaey K, Sompel KVD, Maignien L, Boon N, Aelterman P, Clauwaert P et al (2006) Microbial fuel cells for sulfide. Environ Sci Technol 40:5218–5224

    Article  CAS  Google Scholar 

  • Rahimnejad M, Bakeri G, Najafpour G et al (2014) A review on the effect of proton exchange membranes in microbial fuel cells. Biofuel Res J 1:7–15

    Article  CAS  Google Scholar 

  • Rahimnejad M, Adhami A, Darvari S et al (2015) Microbial fuel cell as new technology for bioelectricity generation: a review. Alexandria Eng J 54:745–756

    Article  Google Scholar 

  • Rengasamy K, Berchmans S (2012) Bioresource technology simultaneous degradation of bad wine and electricity generation with the aid of the coexisting biocatalysts Acetobacter aceti and Gluconobacter roseus. Bioresour Technol 104:388–393

    Article  CAS  Google Scholar 

  • Ringeisen BR, Henderson E, Wu PK et al (2006) High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol 40:2629–2634

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, GJW E et al (2006) Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrog Energy 31:1632–1640

    Article  CAS  Google Scholar 

  • Rozendal RA, Hamelers HVM, Rabaey K et al (2008) Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol 26:450–459

    Article  CAS  Google Scholar 

  • Samsudeen N, Radhakrishnan TK, Matheswaran M (2015) Bioresource Technology Bioelectricity production from microbial fuel cell using mixed bacterial culture isolated from distillery wastewater. Bioresour Technol 195:242–247

    Article  CAS  Google Scholar 

  • Schröder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    Article  Google Scholar 

  • Society R (2016) Electrical effects accompanying the decomposition of organic compounds. II. Ionisation of the gases produced during fermentation. Author (s): Potter MC, Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Publish. 91:465–480

    Google Scholar 

  • Sonawane JM, Marsili E (2014) Science direct treatment of domestic and distillery wastewater in high surface microbial fuel cells. Int J Hydrog Energy 39:21819–21827

    Article  CAS  Google Scholar 

  • Song H, Zhu Y, Li J (2015) Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells–a mini review. Arab J Chem:1–8

    Google Scholar 

  • Song R-B, Zhao C-E, Jiang L-P et al (2016) Bacteria-affinity 3D macroporous graphene/MWCNTs/Fe3 O4 foams for high-performance microbial fuel cells. ACS Appl Mater Interfaces 8:16170–16177

    Google Scholar 

  • Su DS, Zhang J, Frank B et al (2010) Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 169–180

    Google Scholar 

  • Sultana S, Khan MD, Sabir S et al (2015) Bio-electro degradation of azo-dye in a combined anaerobic–aerobic process along with energy recovery. New J Chem 39:9461–9470

    Article  CAS  Google Scholar 

  • Tables A (2013) World population prospects. The 2012 revision

    Google Scholar 

  • Tandukar M, Huber SJ, Onodera T, Pavlostathis SG (2009) Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol 43:8159–8165

    Article  CAS  Google Scholar 

  • Worrell JH (1997) Inorganic chemistry an industrial and environmental perspective. J Chem Educ 74(12):1399

    Article  Google Scholar 

  • Wu TSX, Zhou CC (2014) Effect of different acclimation methods on the performance of microbial fuel cells using phenol as substrate. Bioprocess Biosyst Eng 37:133–138

    Article  Google Scholar 

  • Yang Q, Wang X, Feng Y et al (2012) Electricity generation using eight amino acids by air – cathode microbial fuel cells. Fuel 102:478–482

    Article  CAS  Google Scholar 

  • Yi H, Nevin KP, Kim B et al (2009) Biosensors and bioelectronics selection of a variant of Geobacter sulfurreducens with enhanced capacity for current production in microbial fuel cells. Biosens Bioelectron 24:3498–3503

    Article  CAS  Google Scholar 

  • Zhang X, Xia X, Ivanov I et al (2014) Enhanced activated carbon cathode performance for microbial fuel cell by blending carbon black. Environ Sci Technol 48:2075–2081

    Article  CAS  Google Scholar 

  • Zhu G, Chen G, Yu R, Li H, Wang C (2016) Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochem 51:80–88

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Department of Chemistry, Aligarh Muslim University, Aligarh for providing necessary research facilities. Authors are also thankful to Science and Engineering Research Board (SERB), University Grants Commission for departmental research support in the form of DRS II Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Danish Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Khan, M.D., Khan, N., Sultana, S., Khan, M.Z., Sabir, S., Azam, A. (2018). Microbial Fuel Cell: Waste Minimization and Energy Generation. In: Oves, M., Zain Khan, M., M.I. Ismail, I. (eds) Modern Age Environmental Problems and their Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-64501-8_8

Download citation

Publish with us

Policies and ethics