Skip to main content

Bioremediation: A Sustainable Tool to Prevent Pesticide Pollution

  • Chapter
  • First Online:
Modern Age Environmental Problems and their Remediation

Abstract

The revolution in manufacturing of different types of agrochemical has no doubt enhanced yield in our agricultural products and protect crops from diseases and pests. Pesticides at present play an important role in enhancing the yield and provide an economical benefit to our farmers. Environmental contamination is a potential threat to human health.With the advent of agrochemicals there has been enhancement in crop productivity and improved resistance against diseases. To combat economic losses in agriculture sector pesticides plays crucial role in sustaining agro-productivity. Due to indiscriminate use of chemical pesticides together amplified industrialization and urbanization; there has been a parallel increase in environmental pollution. To counterfeit environmental contamination, we need to implement bioremediation. Bioremediation is most effective technology wherein we utilize microbes as a potential contrivance for degradation of environmental pollutants. Bioremediation is eco-friendly, inexpensive, competent and proficient technology for pesticide detoxification. Bioremediation encompasses numerous in-situ initiatives for instance bioventing, biosparging, bioaugmentation and ex-situ contrivances namely land farming, biopiling, bioreactors etc. Detoxification of pesticides via phytoremediation methods like phytodegradation (Phytotransformation), phytovolatilization, rhizoremediation etc., has also been employed. The central theme of this chapter will be summarizing limitations and challenges linked with some widely employed bioremediation techniques and consequently evaluating the impending relevance of these remedial tools to eliminate pesticides from the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baker RS (1999) Bioventing systems: a critical review. In: Adriano DC, Bollag JM, Frankenberger WT Jr, Sims RC (eds) Bioremediation of contaminated soils. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 595–630

    Google Scholar 

  • Batayneh AT (2012) Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9:153–162

    Article  CAS  Google Scholar 

  • Boltner D, Moreno-Morillas S, Ramos JL (2005) 16S rDNA phylogeny and distribution of lin genes in novel hexachlorocyclohexane-degrading Sphingomonas strains. Environ Microbiol 7:1329–1338

    Article  CAS  Google Scholar 

  • Bouldin JL, Farris JL, Moore MT, Smith S Jr, Cooper CM (2006) Hydroponic uptake of atrazine and lambda-cyhalothrin in Juncus effusus and Ludwigia peploides. Chemosphere 65:1049–1057

    Article  CAS  Google Scholar 

  • Capdevila S, Martınez-Granero FM, Sanchez-Contreras M, Rivilla R, Martin M (2004) Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 150:3889–3897

    Article  CAS  Google Scholar 

  • Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    Article  CAS  Google Scholar 

  • Chang SW, Lee SJ, Je CH (2005) Phytoremediation of atrazine by poplar trees: toxicity, uptake, and transformation. J Environ Sci Health A 40:801–811

    Article  Google Scholar 

  • Conesa HM, Evangelou MWH, Robinson BH, Schulin R (2012) A critical view of current state of phytotechnologies to remediate soils: still a promising tool? Sci World J. doi:10.1100/2012/173829

  • Couto MNPFS, Monteiro E, Vasconcelos MTSD (2010) Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation. Environ Sci Pollut Res 17(7):1339–1346

    Article  CAS  Google Scholar 

  • Davis LC, Erickson LE (2002) A review of the potential for phytovolatilization of the volatile contaminants ethylene dibromide, ethylene dichloride, and carbon tetrachloride. In: Proceedings of the conference on application of waste remediation technologies to agricultural contamination of water resources, July 30–August 1, Kansas City, Missouri, USA

    Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3:3004.1–3004.10

    Article  Google Scholar 

  • Doucette WJ, Bugbee BG, Smith SC, Pajak CJ, Ginn JS (2003) Uptake, metabolism, and phytovolatilization of trichloroethylene by indigenous vegetation: impact of precipitation. In: SC MC, Schnoor JL (eds) Phytoremediation. Wiley, New York, pp 561–588

    Chapter  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri A (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2-3):143–152

    Article  CAS  Google Scholar 

  • Dzantor EK, Beauchamp RG (2002) Phytoremediation, Part I: Fundamental basis for the use of plants in remediation of organic and metal contamination. Environ Pract 4:77–87

    Article  Google Scholar 

  • Edwards R, Dixon DP, Walbot V (2000) Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci 5:193–198

    Article  CAS  Google Scholar 

  • Felsot AS, Mitchell JK, Bicki TJ, Frank JF (1992) Experimental design for testing land farming of pesticide contaminated soil excavated from agrochemical facilities. Pesticide Waste Management, Chapter 22:244–261

    Article  Google Scholar 

  • Fragoeiro S (2005) Use of fungi in bioremediation of pesticides. Dissertation. Cranfield University, Bedford

    Google Scholar 

  • Frutos FJV, Escolano O, García F, Babín M, Fernandez MD (2010) Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J Hazard Mater 183(1–3):806–813

    Article  CAS  Google Scholar 

  • Fulekar MH (2009) Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Roman Biotechnol Lett 14(6):4900–4905

    CAS  Google Scholar 

  • Gao YZ, Zhu LZ (2003) Phytoremediation and its models for organic contaminated soils. J Environ Sci (China) 15:302–310

    CAS  Google Scholar 

  • Garrison AW, Nzengung VA, Avants JK, Ellington JJ, Jones WJ, Rennels D, Wolfe NL (2000) Photodegradation of p, p’-DDT and the enantiomers of o, p’-DDT. Environ Sci Technol 34:1663–1670

    Article  CAS  Google Scholar 

  • Gouma S (2009) Biodegradation of mixtures of pesticides by bacteria and white rot fungi, Ph.D. thesis, School of Health Cranfield University, p 458

    Google Scholar 

  • Grangeot M, Chauvel B, Gauvrit C (2006) Spray retention, foliar uptake and translocation of glufosinate and glyphosate in Ambrosia artemisiifolia. Weed Res 46:152–162

    Article  CAS  Google Scholar 

  • Hatzios K, Penner D (1982) Metabolism of herbicides in higher plants. Minneapolis Burgess Publishing, Minneapolis

    Google Scholar 

  • Heath E, Scancar J, Zuliani T, Milacic R (2010) A complex investigation of the extent of pollution in sediments of the Sava River: Part 2: Persistent organic pollutants. Environ Monit Assess 163:277–293

    Article  CAS  Google Scholar 

  • Hong MS, Farmayn WF, Dorth IJ, Chiang CY, Mcmillan SK, Schnoor JL (2001) Phytoremediation of MTEB from groundwater plume. Environ Sci Technol 35:1231–1239

    Article  CAS  Google Scholar 

  • Kadian N, Gupta A, Satya S, Mehta RK, Malik A (2008) Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour Technol 99(11):4642–4647

    Article  CAS  Google Scholar 

  • Kao CM, Chen CY, Chen SC, Chien HY, Chen YL (2008) Application of in situ biosparging to remediate a petroleum hydrocarbon spill site: field and microbial evaluation. Chemosphere 70(8):1492–1499

    Article  CAS  Google Scholar 

  • Khan NU, Varma B, Imrana N, Shetty PK (2011) Phytoremediation using an indigenous crop plant (wheat): the uptake of methyl parathion and metabolism of p-nitrophenol, Ind. J Sci Technol 4(12):1661–1667

    CAS  Google Scholar 

  • Koskinen WC, Rice PJ, Anhalt JA, Sakaliene O, Moorman TB, Arthur EL (2002) Sorption-desorption of aged sulfonyl amino carbonyl triazolinone herbicide in soil. J Agric Food Chem 50:5368–5372

    Article  CAS  Google Scholar 

  • Koskinen WC, Calderon MJ, Rice PJ, Cornejo J (2006) Sorption– desorption of flucarbazone and propoxycarbazone and their benzenesulfonamide and triazolinone metabolites in two soils. Pest Manag Sci 62:598–602

    Article  CAS  Google Scholar 

  • Lambert JM, Yang T, Thomson NR, Barker JF (2009) Pulsed biosparging of a residual fuel source emplaced at CFB borden. Inter J Soil Sedi Water 2(3)

    Google Scholar 

  • Lee WY, Iannucci-Berger WA, Eitzer BD, White JC, Mattina MI (2003) Plant uptake and translocation of air-borne chlordane and comparison with the soil-to-plant route. Chemosphere 53:111–121

    Article  CAS  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53(4–5):263–272

    Article  CAS  Google Scholar 

  • Lorenzo DV (2008) Systems biology approaches to bioremediation. Curr Opinion Biotech 19:579–589

    Article  Google Scholar 

  • Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2010) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotech Advan 29:248–258

    Article  Google Scholar 

  • Mervat SM (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12(4):1–6

    Google Scholar 

  • Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M (2006) Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in hexachlorocyclohexane degradation. Appl Environ Microbiol 72:6923–6933

    Article  CAS  Google Scholar 

  • Mohammed MS (2009) Degradation of methomyl by the novel bacterial strain Stenotrophomonas maltophilia M1. Electron J Biotechnol 12:1–6

    Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Niti C, Sunita S, Kamlesh K, Rakesh K (2013) Bioremediation: An emerging technology for remediation of pesticides. Res J Chem Environ 17(4):88–105

    CAS  Google Scholar 

  • Qureshi A, Mohan M, Kanade GS, Kapley A, Purohit HJ (2009) In situ bioremediation of organochlorine-pesticide contaminated microcosm soil and evaluation by gene probe. Pest Manag Sci 65:798–804

    Article  CAS  Google Scholar 

  • Rajkumar M, Prasad MNV, Freitas H, Ae N (2009) Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals. Crit Rev Biotechnol 29(2):120–130

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore producing bacteria for improving heavymetal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Riser-Roberts E (1998) Bioremediation of petroleum contaminated site. CRC Press, Boca Raton

    Book  Google Scholar 

  • Rockne K, Reddy K (2003) Bioremediation of contaminated sites. University of Illinois, Chicago

    Google Scholar 

  • Sandermann H Jr (1992) Plant metabolism of xenobiotics. Trends Biol Sci 17:82–84

    Article  CAS  Google Scholar 

  • Seech A, Bolanos-Shaw K, Hill D, Molin J (2008) In situ bioremediation of pesticides in soil and groundwater. Remedia Winter 19:87–98

    Article  Google Scholar 

  • Shanahan P (2004) Bioremediation, waste containment and remediation technology, Spring 2004, Massachusetts Institute of Technology, MIT Open Course Ware

    Google Scholar 

  • Shaw LJ, Burns RG (2004) Enhanced mineralisation of [U-14C] 2, 4- dichlorophenoxyacetic acid in soil from the rhizosphere of Trifolium pretense. Appl Environ Microbiol 70:4766–4774

    Article  CAS  Google Scholar 

  • Shaw LJ, Burns RG (2005) Rhizodeposition and the enhanced mineralization of 2,4-dichlorophenoxyacetic acid in soil from the Trifolium pretense rhizosphere. Environ Microbiol 7:191–202

    Article  CAS  Google Scholar 

  • Strobel KL, McGowan S, Bauer RD, Griebler C, Liu J, Ford RM (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108(9):2070–2077

    Article  CAS  Google Scholar 

  • Surekha RM, Lakshmi PKL, Suvarnalatha D, Jaya M, Aruna S, Jyothi K, Narasimha G, Venkateswarlu K (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:26–31

    Google Scholar 

  • Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux (transmembrane pressure) and membranes properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing waste water. Environ Sci Technol 41:2008–2014

    Article  CAS  Google Scholar 

  • Trapp S, McFarlane JC, Matthies M (1994) Model for uptake of xenobiotics into plants—validation with bromacil experiments. Environ Toxicol Chem 13:413–422

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (2006) A citizen’s guide to bioremediation. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  • Wu T, Crapper M (2009) Simulation of biopile processes using a hydraulics approach. J Hazard Mater 171(1–3):1103–1111

    Article  CAS  Google Scholar 

  • Xia H, Ma X (2006) Phytoremediation of ethion by water hyacinth (Eichhornia crassipes) from water. Bioresour Technol 97:1050–1054

    Article  CAS  Google Scholar 

  • Yates SR, McConnell LL, Hapeman CJ, Papiernik SK, Gao S, Trabue SL (2011) Managing agricultural emissions to the atmosphere: state of the science, fate and mitigation and identifying research gaps. J Environ Qual 40:1347–1358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talat Parween .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Parween, T., Bhandari, P., Sharma, R., Jan, S., Siddiqui, Z.H., Patanjali, P.K. (2018). Bioremediation: A Sustainable Tool to Prevent Pesticide Pollution. In: Oves, M., Zain Khan, M., M.I. Ismail, I. (eds) Modern Age Environmental Problems and their Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-64501-8_12

Download citation

Publish with us

Policies and ethics