Skip to main content

On a Diffuse Interface Model for Tumour Growth with Non-local Interactions and Degenerate Mobilities

  • Chapter
  • First Online:
Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs

Part of the book series: Springer INdAM Series ((SINDAMS,volume 22))

Abstract

We study a non-local variant of a diffuse interface model proposed by Hawkins–Daarud et al. (Int. J. Numer. Methods Biomed. Eng. 28:3–24, 2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn–Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which are the non-local analogue of those obtained in Frigeri et al. (European J. Appl. Math. 2015). Furthermore, we establish existence of weak solutions for the case of degenerate mobilities and singular potentials, which serves to confine the order parameter to its physically relevant interval. Due to the non-local nature of the equations, under additional assumptions continuous dependence on initial data can also be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Armstrong, N.J., Painter, K.J., Sherratt, J.A.: A continuum approach to modelling cell-cell adhesion. J. Theor. Biol. 243, 98–113 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bates, P.W., Han, J.: The Dirichlet boundary problem for a nonlocal Cahn–Hilliard equation. J. Math. Anal. Appl. 311, 289–312 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bates, P.W., Han, J.: The Neumann boundary problem for a nonlocal Cahn–Hilliard equation. J. Differ. Equ. 212, 235–277 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bosi, I., Fasano, A., Primicerio, M., Hillen, T.: A non-local model for cancer stem cells and the tumour growth paradox. Math. Med. Biol. 34, 59–75 (2017)

    MathSciNet  Google Scholar 

  5. Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20, 175–212 (1999)

    MATH  MathSciNet  Google Scholar 

  6. Chaplain, M.A.J., Lachowicz, M., Szymańska, Z., Wrzosek, D.: Mathematical modelling of cancer invasion: the importance of cell-cell adhesion and cell-matrix adhesion. Math. Models Methods Appl. Sci. 21, 719–743 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, Y., Wise, S.M., Shenoy, V.B., Lowengrub, J.S.: A stable scheme for a nonlinear, multiphase tumor growth model with an elastic membrane. Int. J. Numer. Meth. Biomed. Eng. 30, 726–754 (2014)

    Article  MathSciNet  Google Scholar 

  8. Cherfils, L., Miranville, A., Zelik, S.: On a generalized Cahn–Hilliard equation with biological applications. Discrete Contin. Dyn. Syst. Ser. B 19, 2013–2026 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Colli, P., Frigeri, S., Grasselli, M.: Global existence of weak solutions to a nonlocal Cahn–Hilliard–Navier–Stokes system. J. Math. Anal. Appl. 386, 428–444 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Colli, P., Gilardi, G., Hilhorst, D.: On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst. 35, 2423–2442 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  11. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Vanishing viscosities and error estimate for a Cahn–Hilliard type phase field system related to tumor growth. Nonlinear Anal. Real World Appl. 26, 93–108 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colli, P., Gilardi, G., Rocca, E., Sprekels, J.: Asymptotic analyses and error estimates for a Cahn–Hilliard type phase field system modelling tumor growth. Discrete Contin. Dyn. Syst. Ser. S 10, 37–54 (2017)

    MATH  MathSciNet  Google Scholar 

  13. Cristini, V., Lowengrub, J.: Multiscale modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  14. Cristini, V., Li, X., Lowengrub, J.S., Wise, S.M.: Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching. J. Math. Biol. 58, 723–763 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dai, M., Feireisl, E., Rocca, E., Schimperna, G., Schonbek, M.: Analysis of a diffuse interface model for multispecies tumor growth. Nonlinearity 30, 1639–1658 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  16. Della Porta, F., Grasselli, M.: Convective nonlocal Cahn–Hilliard equations with reaction terms. Discrete Contin. Dyn. Syst. B 20, 1529–1553 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  17. Della Porta, F., Grasselli, M.: On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems. Commun. Pure Appl. Anal. 15, 299–317 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elliott, C.M., Garcke, H.: On the Cahn–Hilliard equation with degenerate mobility. SIAM J. Math Anal. 27, 404–423 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Frieboes, H.B., Jin, F., Chuang, Y.-L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – II: tumor invasion and angiogenesis. J. Theor. Biol. 264, 1254–1278 (2010)

    Article  MathSciNet  Google Scholar 

  20. Frigeri, S.: Global existence of weak solutions for a nonlocal model for two-phase flows of incompressible fluids with unmatched densities. Math. Models Methods Appl. Sci. 26, 1957–1993 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  21. Frigeri, S., Grasselli, M.: Nonlocal Cahn–Hilliard–Navier–Stokes systems with singular potentials. Dyn. Partial Differ. Equ. 9, 273–304 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Frigeri, S., Grasselli, M., Krejčí, P.: Strong solutions for two-dimensional nonlocal Cahn–Hilliard–Navier–Stokes systems. J. Differ. Equ. 255, 2587–2614 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Frigeri, S., Grasselli, M., Rocca, E.: A diffuse interface model for two-phase incompressible flows with non-local interactions and non-constant mobility. Nonlinearity 28, 1257–1293 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  24. Frigeri, S., Grasselli, M., Rocca, E.: On a diffuse interface model of tumor growth. Eur. J. Appl. Math. 26, 215–243 (2015)

    Article  Google Scholar 

  25. Frigeri, S., Gal, C.G., Grasselli, M.: On nonlocal Cahn–Hilliard–Navier–Stokes systems in two dimensions. J. Nonlinear Sci. 26, 847–893 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gajewski, H., Zacharias, K.: On a nonlocal phase separation model. J. Math. Anal. Appl. 286, 11–31 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gal, C.G., Grasselli, M.: Longtime behavior of nonlocal Cahn–Hilliard equations. Discrete Contin. Dyn. Syst. 34, 145–179 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gal, C.G., Giorgini, A., Grasselli, M.: The nonlocal Cahn–Hilliard equation with singular potential: well-posedness, regularity and strict separation property. J. Differ. Equ. 263, 5253–5297 (2017)

    Article  MathSciNet  Google Scholar 

  29. Garcke, H., Lam, K.F.: Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Math. 1, 318–360 (2016)

    Article  Google Scholar 

  30. Garcke, H., Lam, K.F.: On a Cahn–Hilliard–Darcy system for tumour growth with solution dependent source terms. Preprint arXiv:1611.00234 (2016)

    Google Scholar 

  31. Garcke, H., Lam, K.F.: Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete Contin. Dyn. Syst. 37, 4277–4308 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  32. Garcke, H., Lam, K.F.: Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport. Eur. J. Appl. Math. 28, 284–316 (2017)

    Article  MathSciNet  Google Scholar 

  33. Garcke, H., Lam, K.F., Sitka, E., Styles, V.: A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport. Math. Models Methods Appl. Sci. 26, 1095–1148 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  34. Garcke, H., Lam, K.F., Nürnberg, R., Sitka, E.: A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis. Preprint arXiv:1701.06656 (2017)

    Google Scholar 

  35. Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer cell invasion of tissue: local and non-local models and the effect of adhesion. J. Theor. Biol. 250, 684–704 (2008)

    Article  MathSciNet  Google Scholar 

  36. Giacomin, G., Lebowitz, J.: Phase segregation dynamics in particle systems with long range interactions II: interface motion. SIAM J. Appl. Math. 58, 1707–1729 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hawkins-Daarud, A., van der Zee, K.G., Oden, J.T.: Numerical simulation of a thermodynamically consistent four-species tumor growth model. Int. J. Numer. Methods Biomed. Eng. 28, 3–24 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Hilhorst, D., Kampmann, J., Nguyen, T.N., van der Zee, K.G.: Formal asymptotic limit of a diffuse-interface tumor-growth model. Math. Models Methods Appl. Sci. 25, 1011–1043 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  39. Jiang, J., Wu, H., Zheng, S.: Well-posedness and long-time behavior of a non-autonomous Cahn–Hilliard–Darcy system with mass source modeling tumor growth. J. Differ. Equ. 259, 3032–3077 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  40. Lam, K.F., Wu, H.: Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis. Preprint arXiv:1702.06014 (2017)

    Google Scholar 

  41. Lee, C.T., Hoopes, M.F., Diehl, J., Gilliland, W., Huxel, G., Leaver, E.V., McCann, K., Umbanhowar, J., Mogilner, A.: Non-local concepts and models in biology. J. Theor. Biol. 210, 201–219 (2001)

    Article  Google Scholar 

  42. Melchionna, S., Rocca, E.: On a nonlocal Cahn–Hilliard equation with a reaction term. Adv. Math. Sci. Appl. 24, 461–497 (2014)

    MATH  MathSciNet  Google Scholar 

  43. Miranville, A.: Asymptotic behavior of a generalized Cahn–Hilliard equation with a proliferation term. Appl. Anal. 92, 1308–1321 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Novick-Cohen, A.: The Cahn–Hilliard equation: mathematical and modeling perspectives. Adv. Math. Sci. Appl. 8, 965–985 (1998)

    MATH  MathSciNet  Google Scholar 

  45. Novick-Cohen, A.: The Cahn–Hilliard equation. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolution Equations, vol. 4, pp. 201–228. North Holland, Amsterdam (2008)

    Google Scholar 

  46. Simon J.: Compact sets in space L p(0, T; B). Ann. Mat. Pura Appl. 146, 65–96 (1986)

    Google Scholar 

  47. Szymańska, Z., Rodrigo, C.M., Lachowicz, M., Chaplain, M.A.J.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19, 257–281 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  48. Wise, S.M., Lowengrub, J.S., Frieboes, H.B., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth – I: model and numerical method. J. Theor. Biol. 253, 524–543 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Gianni Gilardi, with friendship and admiration. The financial support of the FP7-IDEAS-ERC-StG #256872 (EntroPhase) and of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR “Matematica d’Eccellenza in biologia ed ingegneria come acceleratore di una nuova strateGia per l’ATtRattività dell’ateneo pavese” is gratefully acknowledged. The paper also benefited from the support of the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for SF and ER. SF is “titolare di un Assegno di Ricerca dell’Istituto Nazionale di Alta Matematica (INdAM)” within the project PROGETTO PREMIALE FOE 2014 “Strategic Initiatives for the Environment and Security-SIES”-Metodi variazionali legati al ray-tracing. The authors wish to thank the referee for the careful reading of the paper and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Frigeri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Frigeri, S., Lam, K.F., Rocca, E. (2017). On a Diffuse Interface Model for Tumour Growth with Non-local Interactions and Degenerate Mobilities. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-64489-9_9

Download citation

Publish with us

Policies and ethics