Skip to main content

Part of the book series: Springer INdAM Series ((SINDAMS,volume 22))

  • 641 Accesses

Abstract

This work deals with the structural stability of quasilinear first-order flows w.r.t. arbitrary perturbations not only of data but also of operators. This rests upon a variational formulation based on works of Brezis, Ekeland, Nayroles and Fitzpatrick, and on the use of evolutionary Γ-convergence w.r.t. a nonlinear topology of weak type. This approach is extended to flows of a class of nonmonotone operators. A theory in progress is outlined, and is also used to prove the structural compactness and stability of doubly-nonlinear parabolic flows of the form

$$\displaystyle\begin{array}{rcl} \alpha (D_{t}u) + \partial \gamma (u) \ni h,& & {}\\ \end{array}$$

α being a maximal monotone operator, and γ a lower semicontinuous convex function on a Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This author learned of this paper only recently from Ulisse Stefanelli.

  2. 2.

    The proof was included in [21]. As those proceedings may not be easily available to the Reader, the argument was displayed also in [47].

  3. 3.

    We assume this in consideration of the application of the next section. A reader interested just in evolutionary Γ-convergence might go through the present section assuming that μ is the Lebesgue measure and that τ is the weak topology.

  4. 4.

    We denote the strong, weak, and weak star convergence respectively by →, ⇀, ⇀ ​​​​​​  .

References

  1. Arai, T.: On the existence of the solution for ∂ϕ(u′(t)) + ∂ψ(u(t)) ∋ f(t). J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26, 75–96 (1979)

    MATH  MathSciNet  Google Scholar 

  2. Attouch, H.: Variational Convergence for Functions and Operators. Pitman, Boston (1984)

    MATH  Google Scholar 

  3. Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  4. Bauschke, H.H., Wang, X.: The kernel average for two convex functions and its applications to the extension and representation of monotone operators. Trans. Am. Math. Soc. 361, 5947–5965 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Borwein, L.M., Wang, X.: Fitzpatrick functions and continuous linear monotone operators. SIAM J. Optim. 18, 789–809 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)

    MATH  MathSciNet  Google Scholar 

  7. Braides, A.: Γ-Convergence for Beginners. Oxford University Press, Oxford (2002)

    Book  MATH  Google Scholar 

  8. Braides, A.: A Handbook of Γ-Convergence. In: Chipot, M., Quittner, P. (eds.) Handbook of Partial Differential Equations. Stationary Partial Differential Equations, vol. 3, pp. 101–213. Elsevier, Amsterdam (2006)

    Google Scholar 

  9. Brezis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier (Grenoble) 18, 115–175 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brezis, H., Ekeland, I.: Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B 282, 971–974, 1197–1198 (1976)

    MATH  Google Scholar 

  11. Browder, F.: Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Natl. Acad. Sci. U.S.A. 54, 337–342 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Browder, F., Hess, P.: Nonlinear mappings of monotone type in Banach spaces. J. Funct. Anal. 11, 251–294 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis 10, 297–316 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burachik, R.S., Svaiter, B.F.: Maximal monotonicity, conjugation and the duality product. Proc. Am. Math. Soc. 131, 2379–2383 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  16. Colli, P.: On some doubly nonlinear evolution equations in Banach spaces. Jpn. J. Ind. Appl. Math. 9, 181–203 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Colli, P., Visintin, A.: On a class of doubly nonlinear evolution problems. Commun. Partial Differ. Equ. 15, 737–756 (1990)

    Article  MATH  Google Scholar 

  18. Dal Maso, G.: An Introduction to Γ-Convergence. Birkhäuser, Boston (1993)

    Book  MATH  Google Scholar 

  19. Daneri, S., Savarè, G.: Lecture notes on gradient flows and optimal transport. In: Optimal Transportation. London Mathematical Society Lecture Note Series, vol. 413, pp. 100–144. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  20. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 58, 842–850 (1975)

    Google Scholar 

  21. Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988). Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 20, pp. 59–65. Australian National University, Canberra (1988)

    Google Scholar 

  22. Ghoussoub, N.: Selfdual Partial Differential Systems and Their Variational Principles. Springer, New York (2008)

    Google Scholar 

  23. Ghoussoub, N.: A variational theory for monotone vector fields. J. Fixed Point Theory Appl. 4, 107–135 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ghoussoub, N., Tzou, L.: A variational principle for gradient flows. Math. Ann. 330, 519–549 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  26. Kenmochi, N.: Monotonicity and compactness methods for nonlinear variational inequalities. In: Handbook of Differential Equations: Stationary Partial Differential Equations. Handbook of Differential Equations, vol. 4, pp. 203–298. Elsevier/North-Holland, Amsterdam (2007)

    Google Scholar 

  27. Krylov, N.V.: Some properties of monotone mappings. Litovsk. Mat. Sb. 22, 80–87 (1982)

    MathSciNet  Google Scholar 

  28. Martinez-Legaz, J.-E., Svaiter, B.F.: Monotone operators representable by l.s.c. convex functions. Set-Valued Anal. 13, 21–46 (2005)

    Google Scholar 

  29. Martinez-Legaz, J.-E., Svaiter, B.F.: Minimal convex functions bounded below by the duality product. Proc. Am. Math. Soc. 136, 873–878 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Martinez-Legaz, J.-E., Théra, M.: A convex representation of maximal monotone operators. J. Nonlinear Convex Anal. 2, 243–247 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Mielke, A.: Deriving amplitude equations via evolutionary Γ-convergence. Discrete Contin. Dyn. Syst. Ser. A 35, 2679–2700 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  32. Mielke, A.: Lecture notes on evolutionary Γ-convergence for gradient systems. In: Muntean, A., Rademacher, J., Zagaris, A. (eds.) Macroscopic and Large Scale Phenomena: Coarse Graining, Mean Field Limits and Ergodicity. Lecture Notes in Applied Mathematics and Mechanics, pp. 187–249. Springer, Cham (2016)

    Google Scholar 

  33. Mielke, A., Rossi, R., Savarè, G.: Variational convergence of gradient flows and rate-independent evolutions in metric spaces. Milan J. Math. 80, 381–410 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mielke, A., Rossi, R., Savarè, G.: Nonsmooth analysis of doubly nonlinear evolution equations. Calc. Var. Partial Differ. Equ. 46, 253–310 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  35. Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  36. Nayroles, B.: Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B 282, A1035–A1038 (1976)

    MATH  MathSciNet  Google Scholar 

  37. Penot, J.-P.: A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris Ser. I 338, 853–858 (2004)

    Google Scholar 

  38. Penot, J.-P.: The relevance of convex analysis for the study of monotonicity. Nonlinear Anal. 58, 855–871 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Roche, T., Rossi, R., Stefanelli, U.: Stability results for doubly nonlinear differential inclusions by variational convergence. SIAM J. Control Optim. 52, 1071–1107 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  40. Roubíček, T.: Direct method for parabolic problems. Adv. Math. Sci. Appl. 10, 57–65 (2000)

    MATH  MathSciNet  Google Scholar 

  41. Sandier, E., Serfaty, S.: Gamma-convergence of gradient flows and applications to Ginzburg-Landau. Commun. Pure Appl. Math. 55, 537–581 (2002)

    Article  MATH  Google Scholar 

  42. Senba, T.: On some nonlinear evolution equation. Funkcial. Ekvac. 29, 243–257 (1986)

    MATH  MathSciNet  Google Scholar 

  43. Stefanelli, U.: The Brezis-Ekeland principle for doubly nonlinear equations. SIAM J. Control Optim. 47, 1615–1642 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Svaiter, B.F.: Fixed points in the family of convex representations of a maximal monotone operator. Proc. Am. Math. Soc. 131, 3851–3859 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  45. Visintin, A.: Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl. 18, 633–650 (2008)

    MATH  MathSciNet  Google Scholar 

  46. Visintin, A.: Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital. 4, 363–391 (2011)

    MATH  MathSciNet  Google Scholar 

  47. Visintin, A.: Variational formulation and structural stability of monotone equations. Calc. Var. Partial Differ. Equ. 47, 273–317 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  48. Visintin, A.: An extension of the Fitzpatrick theory. Commun. Pure Appl. Anal. 13, 2039–2058 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  49. Visintin, A.: Weak structural stability of pseudo-monotone equations. Discrete Contin. Dyn. Syst. Ser. A 35, 2763–2796 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  50. Visintin, A.: Evolutionary Γ-convergence of weak type (arXiv 1706.02172)

    Google Scholar 

  51. Visintin, A.: Structural compactness and stability of pseudo-monotone flows (arXiv 1706.02176)

    Google Scholar 

Download references

Acknowledgements

This paper is dedicated to Professor Gianni Gilardi on the occasion of his 70th birthday. The author is a member of GNAMPA of INdAM.

This research was partially supported by a MIUR-PRIN 2015 grant for the project “Calcolo delle Variazioni” (Protocollo 2015PA5MP7-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Visintin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Visintin, A. (2017). On the Structural Properties of Nonlinear Flows. In: Colli, P., Favini, A., Rocca, E., Schimperna, G., Sprekels, J. (eds) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs. Springer INdAM Series, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-64489-9_21

Download citation

Publish with us

Policies and ethics