Skip to main content

Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems

  • Conference paper
  • First Online:
Advanced Solutions in Diagnostics and Fault Tolerant Control (DPS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 635))

Included in the following conference series:

Abstract

This paper introduces approximate analytic quality criteria useful in assessing the efficiency of evolutionary multi-objective optimization (EMO) procedures. We present a summary of extensive research into computing. In the performed comparative study we take into account the various approaches of the state-of-the-art, in order to objectively assess the EMO performance in highly dimensional spaces; where some executive criteria, such as those based on the true Pareto front, are difficult to calculate. Whereas, on the other hand, the proposed approximated quality criteria are easy to implement, computationally inexpensive, and sufficiently effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bader, J., Zitzler, E.: A hypervolume-based optimizer for high-dimensional objective spaces. In: Conference on Multiple Objective and Goal Programming (MOPGP 2008). Lecture Notes in Economics and Mathematical Systems. Springer (2009)

    Google Scholar 

  2. Białaszewski, T., Kowalczuk, Z.: Solving highly-dimensional multi-objective optimization problems by means of genetic gender. Advanced and Intelligent Computations in Diagnosis and Control. Advances in Intelligent Systems and Computing, vol. 386, pp. 317–329. Springer, Cham (2016)

    Google Scholar 

  3. Coello, C.C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary algorithms for solving multi-objective problems. Genetic and Evolutionary Computation, 2nd edn. Springer, Berlin (2007)

    Google Scholar 

  4. Deb, K.: Current trends in evolutionary multi-objective optimization. Int. J. Simul. Multi. Optimisation 1(1), 1–8 (2007)

    Article  Google Scholar 

  5. Deb, K., Gupta, H.: Introducing robustness in multi-objective optimization. Evol. Comput. J. 14(4), 463–494 (2006)

    Article  Google Scholar 

  6. Deb, K., Mohan, M., Mishra, S.: Evaluating the domination-based multiobjective evolutionary algorithm for a quick computation of Pareto-optimal solutions. Evol. Comput. J. 13(4), 501–525 (2005)

    Article  Google Scholar 

  7. Emmerich, M., Beume, N., Naujoks, B.: An EMO algorithm using the hypervolume measure as selection criterion. In: Evolutionary Multi-Criterion Optimization. Lecture Notes in Computer Science, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Google Scholar 

  8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  9. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Struct. Optim. 4, 99–107 (1992)

    Article  Google Scholar 

  10. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: IEEE World Congress on Computational Computation, Piscataway, NJ, vol. 1, pp. 82–87 (1994)

    Google Scholar 

  11. Korbicz, J., Kościelny, J.M., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis, Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    MATH  Google Scholar 

  12. Kowalczuk, Z., Białaszewski, T.: Improving evolutionary multi-objective optimisation by niching. Int. J. Inf. Technol. Intell. Comput. 1(2), 245–257 (2006)

    MATH  Google Scholar 

  13. Kowalczuk, Z., Białaszewski, T.: Improving evolutionary multi-objective optimisation using genders. IN: Artificial Intelligence and Soft Computing. Lecture Notes in Artificial Intelligence, vol. 4029, pp. 390–399. Springer, Berlin (2006)

    Google Scholar 

  14. Kowalczuk, Z., Białaszewski, T.: Designing FDI observers by improved evolutionary multi-objective optimization. In: Proceedings of 6th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes, pp. 601–606, Beijing, China (2006)

    Google Scholar 

  15. Kowalczuk, Z., Białaszewski, T.: Niching mechanisms in evolutionary computations. Int. J. Appl. Math. Comput. Sci. 16(1), 59–84 (2006)

    MathSciNet  MATH  Google Scholar 

  16. Kowalczuk, Z., Białaszewski, T.: Gender selection of a criteria structure in multi-objective optimization of decision systems (in Polish). Pomiary Automatyka Kontrola 57(7), 810–814 (2011)

    Google Scholar 

  17. Kowalczuk, Z., Białaszewski, T.: Gender approach to multi-objective optimization of detection systems by pre-selection of criteria. In: Intelligent Systems in Technical and Medical Diagnosis. Advances in Intelligent Systems and Computing, AISC, vol. 230, pp. 161–174. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39881-0_13

  18. Kowalczuk, Z., Białaszewski, T.: Solving highly-dimensional multi-objective optimization problems by means of genetic gender. In: Advanced and Intelligent Computations in Diagnosis and Control, Advances in Intelligent Systems and Computing. AISC, vol. 386, pp. 317–329. Springer, Cham (2016). doi:10.1007/978-3-319-23180-8_23

  19. Kowalczuk, Z. and Białaszewski, T.: Gender approaches to evolutionary multi-objective optimization using pre-selection of criteria. Engineering Optimization. Taylor and Francis (2017). doi:10.1080/0305215X.2017.1305374

  20. Kukkonen, S., Lampinen, J.: GDE3: the third evolution step of generalized differential evolution. IEEE Congr. Evol. Comput. 1, 443–450 (2005)

    Google Scholar 

  21. Lis, J., Eiben, A.: A multi-sexual genetic algorithm for multiobjective optimization. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 59–64 (1997)

    Google Scholar 

  22. Liu, B., Fernández, F.V., Zhang, Q., Pak, M., Sipahi, S., Gielen G.G.E.: An enhanced MOEA/D-DE and its application to multiobjective analog cell sizing. IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

  23. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  24. Qingfu Z., Aimin Z., Shizheng Z., Ponnuthurai N. S., Wudong L., Santosh T.: Multiobjective optimization test instances for the CEC 2009 Special Session and Competition. Working Report, CES-887, School of Computer Science and Electrical Engineering. University of Essex (2009)

    Google Scholar 

  25. Rejeb, J., AbuElhaija, M.: New gender genetic algorithm for solving graph partitioning problems. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 444–446 (2000)

    Google Scholar 

  26. Sanchez-Velazco, J., Bullinaria, J.A.: Gendered selection strategies in genetic algorithms for optimization. In: Proceedings of the UK Workshop on Computational Intelligence, pp. 217–223, Bristol, UK (2003)

    Google Scholar 

  27. Sanchez-Velazco, J., Bullinaria, J.A.: Sexual Selection with Competitive/Co-Operative Operators for Genetic Algorithms. In: Proceedings of the IASTED International Conference on Neural Networks and Computational Intelligence. ACTA Press, pp. 191–196 (2003)

    Google Scholar 

  28. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. In: Proceedings of International Conference on Genetic Algorithms and their Applications, pp. 93–100. Lawrence Erlbaum Associates, Pittsburgh (1985)

    Google Scholar 

  29. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  30. Sodsee, S., Meesad, P., Li, Z., Halang, W.: A networking requirement application by multi-objective genetic algorithms with sexual selection. In: 3rd International Conference Intelligent System and Knowledge Engineering, vol. 1, pp. 513–518 (2008)

    Google Scholar 

  31. Song Goh, K., Lim, A., Rodrigues, B.: Sexual selection for genetic algorithms. Artif. Intell. Rev., 123–152 (2003)

    Google Scholar 

  32. Viennet, R., Fontiex, C., Marc, I.: Multicriteria optimisation using a genetic algorithm for determining a Pareto set. Int. J. Syst. Sci. 27(2), 255–260 (1996)

    Article  MATH  Google Scholar 

  33. Vrajitoru, D.: Simulating Gender Separation with Genetic Algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 634–641 (2002)

    Google Scholar 

  34. While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006)

    Article  Google Scholar 

  35. Yan, T.: An improved genetic algorithm and its blending application with neural network. In: 2nd International Workshop Intelligent Systems and Applications, pp. 1–4 (2010)

    Google Scholar 

  36. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  37. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  38. Zitzler, E., Thiele, L., Bader, J.: On set-based multiobjective optimization. IEEE Trans. Evol. Comput. 14(1), 58–79 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Białaszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Kowalczuk, Z., Białaszewski, T. (2018). Approximate Quality Criteria for Difficult Multi-Objective Optimization Problems. In: Kościelny, J., Syfert, M., Sztyber, A. (eds) Advanced Solutions in Diagnostics and Fault Tolerant Control. DPS 2017. Advances in Intelligent Systems and Computing, vol 635. Springer, Cham. https://doi.org/10.1007/978-3-319-64474-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64474-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64473-8

  • Online ISBN: 978-3-319-64474-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics